Description du produit
Description du produit
M/HBP R134A (110V-120V~60HZ/220V-240V~50HZ) Refrigeration Compressors Special for Home Dehumidifiers
Adopting high-quality components, SIXIHU (WEST LAKE) DIS. refrigeration compressors are always environmental friendly, high efficient, and widely praised by customers in the refrigeration industry due to its low noise, high performance, and long service life.
Features:
1. Low Noise:
– There are 2 welding methods for the compressor casing: flange butt welding or insert welding. The thickness, shape, and internal cavity size of the shell have a significant impact on noise.
– There are 2 fixing methods for the movement: suspension spring type and seat spring type, with the seat spring compressor having less noise and vibration.
2. High Performance:
– Equipped with professional valve components. The valve group is the heart of the compressor and plays a significant role in the performance of the compressor.
3. Long Service Life:
– The crankshaft and connecting rod have good performance and are resistant to friction.
4. High Efficiency & Eco-friendly:
– As the power in a hermetic compressor, an electric motor converts electrical energy into mechanical energy, driving the piston to compress refrigerant vapor, enabling the refrigerant to circulate in the refrigeration system and achieve the purpose of refrigeration
Product Parameters
Compressor Technical Data: M/HBP R134A 110V-120V~60HZ/220V-240V~50HZ
| Serial | Modèle | HP | V/Hz | Displacement (cm3) | Cooling Capacity ASHRAE | Motor type | Starting Device | Starting capacitor (uF) | Running capacitor (uF) | Cooling | Certificate | |||||||||||||||
| -15ºC(5F) | -10ºC(10F) | -5ºC(23F) | 0ºC(32F) | Test Conditions: 7.2ºC(45F) | 10ºC(50F) | |||||||||||||||||||||
| W | Btu/h | W | Btu/h | W | Btu/h | W | Btu/h | Capacity (W) | Capacity (Btu/h) | lnput Power(W) | Current (A) | COP (W/W) | EER (Btu/Wh) | W | Btu/h | |||||||||||
| L | GQR30TC | 1/10 | 220-240V/50-60Hz | 3.0 | 97 | 331 | 125 | 427 | 145 | 495 | 185 | 631 | 245 | 836 | 129 | 0.9 | 1.9 | 6.48 | 275 | 938 | RSIR | PTC/Heavy Hammer PTC/Current Starting Relay | / | / | F | CCC |
| GQR35TC | 1/9 | 3.5 | 135 | 461 | 175 | 597 | 195 | 665 | 265 | 904 | 385 | 1314 | 185 | 1.1 | 2.1 | 7.17 | 420 | 1433 | RSIR | / | / | F | CCC | |||
| GQR45TC | 1/6 | 4.5 | 176 | 601 | 230 | 785 | 280 | 955 | 350 | 1194 | 450 | 1535 | 204 | 1.2 | 2.2 | 7.51 | 485 | 1655 | RSIR | / | / | F | CCC | |||
| ML | GQR55TC | 1/6+ | 5.5 | 245 | 836 | 310 | 1058 | 390 | 1331 | 525 | 1791 | 575 | 1962 | 273 | 1.5 | 2.1 | 7.19 | 615 | 2098 | RSIR | / | / | F | CCC | ||
| GQR60TC | 1/4 | 6.5 | 335 | 1143 | 435 | 1484 | 545 | 1860 | 665 | 2269 | 705 | 2405 | 306 | 1.9 | 2.3 | 7.86 | 745 | 2542 | RSIR | / | / | F | CCC | |||
| GQR70TC | 1/4 | 7.0 | 370 | 1262 | 480 | 1638 | 595 | 2030 | 720 | 2457 | 765 | 2610 | 364 | 2.1 | 2.1 | 7.17 | 805 | 2747 | RSIR | / | / | F | CCC | |||
| MQ | GQR80TC | 1/4+ | 8.0 | 420 | 1433 | 550 | 1877 | 680 | 2320 | 810 | 2764 | 855 | 2917 | 388 | 2.2 | 2.2 | 7.52 | 895 | 3054 | CSIR | Heavy Hammer Current Starting Relay | 80 | / | F | CCC | |
| GQR90TC | 1/3- | 9.0 | 474 | 1617 | 621 | 2119 | 768 | 2620 | 910 | 3105 | 955 | 3258 | 434 | 2.3 | 2.2 | 7.51 | 995 | 3395 | CSIR | 80 | / | F | CCC | |||
| GQR11TC | 3/8 | 11.0 | 536 | 1829 | 702 | 2395 | 868 | 2962 | 1034 | 3528 | 1079 | 3682 | 469 | 2.9 | 2.3 | 7.85 | 1119 | 3818 | CSIR | 80 | / | F | CCC | |||
| MD | GQR12TC | 3/8+ | 12.0 | 606 | 2068 | 793 | 2706 | 981 | 3347 | 1168 | 3985 | 1208 | 4122 | 549 | 3.4 | 2.2 | 7.51 | 1248 | 4258 | CSIR | 80 | / | F | CCC | ||
| GQR14TC | 1/2 | 14.0 | 685 | 2337 | 896 | 3057 | 1108 | 3780 | 1320 | 4504 | 1365 | 4657 | 593 | 3.6 | 2.3 | 7.85 | 1305 | 4453 | CSIR | 80 | / | F | CCC | |||
| GQR16TC | 1/2+ | 16.0 | 754 | 2573 | 1012 | 3453 | 1252 | 4272 | 1492 | 5091 | 1535 | 5237 | 667 | 4.0 | 2.3 | 7.85 | 1575 | 5374 | CSIR | 80 | / | F | CCC | |||
| Serial | Modèle | HP | V/Hz | Displacement (cm3) | Cooling Capacity ASHRAE | Motor type | Starting Device | Starting capacitor (uF) | Running capacitor (uF) | Cooling | Certificate | |||||||||||||||
| -15ºC(5F) | -10ºC(10F) | -5ºC(23F) | 0ºC(32F) | Test Conditions: 7.2ºC(45F) | 10ºC(50F) | |||||||||||||||||||||
| W | Btu/h | W | Btu/h | W | Btu/h | W | Btu/h | Capacity (W) | Capacity (Btu/h) | lnput Power(W) | Current (A) | COP (W/W) | EER (Btu/Wh) | W | Btu/h | |||||||||||
| L | GQR30TCD | 1/10 | 110-120V/60Hz | 3.0 | 118 | 403 | 150 | 512 | 174 | 594 | 225 | 768 | 295 | 1007 | 134 | 1.8 | 2.2 | 7.51 | 340 | 1160 | RSIR | PTC/Heavy Hammer PTC/Current Starting Relay | / | / | F | CCC |
| GQR35TCD | 1/9 | 3.5 | 162 | 553 | 210 | 717 | 234 | 798 | 320 | 1092 | 465 | 1587 | 211 | 2.0 | 2.2 | 7.52 | 504 | 1720 | RSIR | / | / | F | CCC | |||
| ML | GQR45TCD | 1/6 | 4.5 | 210 | 717 | 275 | 938 | 340 | 1160 | 420 | 1433 | 540 | 1842 | 245 | 2.1 | 2.2 | 7.52 | 580 | 1979 | RSIR | / | / | F | CCC | ||
| GQR55TCD | 1/6+ | 5.5 | 310 | 1058 | 390 | 1331 | 480 | 1638 | 610 | 2081 | 665 | 2269 | 316 | 2.9 | 2.1 | 7.18 | 720 | 2457 | RSIR | / | / | F | CCC | |||
| GQR60TCD | 1/4 | 6.5 | 378 | 1290 | 510 | 1740 | 650 | 2218 | 731 | 2494 | 786 | 2682 | 341 | 3.5 | 2.3 | 7.86 | 841 | 2869 | RSIR | / | / | F | CCC | |||
| GQR70TCD | 1/4 | 7.0 | 430 | 1467 | 545 | 1860 | 750 | 2559 | 806 | 2750 | 862 | 2941 | 410 | 3.8 | 2.1 | 7.17 | 917 | 3129 | RSIR | / | / | F | CCC | |||
| MQ | GQR80TCD | 1/4+ | 8.0 | 470 | 1604 | 625 | 2133 | 820 | 2798 | 907 | 3095 | 964 | 3289 | 438 | 4.2 | 2.2 | 7.51 | 1019 | 3477 | CSIR | Heavy Hammer Current Starting Relay | 93-169 | / | F | CCC | |
| GQR90TCD | 1/3- | 9.1 | 530 | 1808 | 695 | 2371 | 890 | 3037 | 1019 | 3477 | 1074 | 3664 | 488 | 3.8 | 2.2 | 7.51 | 1129 | 3852 | CSIR | 93-169 | / | F | CCC | |||
| GQR11TCD | 3/8 | 11.0 | 600 | 2047 | 772 | 2634 | 954 | 3255 | 1100 | 3753 | 1155 | 3941 | 502 | 5.2 | 2.3 | 7.85 | 1210 | 4129 | CSIR | 93-169 | / | F | CCC | |||
| MD | GQR12TCD | 3/8+ | 12.8 | 678 | 2313 | 872 | 2975 | 1034 | 3528 | 1270 | 4333 | 1325 | 4521 | 602 | 5.5 | 2.2 | 7.51 | 1380 | 4709 | CSIR | 93-169 | / | F | CCC | ||
| GQR14TCD | 1/2 | 14.2 | 758 | 2586 | 985 | 3361 | 1218 | 4156 | 1402 | 4784 | 1457 | 4971 | 633 | 5.8 | 2.3 | 7.85 | 1512 | 5159 | CSIR | 93-169 | / | F | CCC | |||
| GQR16TCD | 1/2+ | 15.3 | 829 | 2829 | 1113 | 3798 | 1375 | 4692 | 1641 | 5599 | 1696 | 5787 | 737 | 6.0 | 2.3 | 7.85 | 1751 | 5974 | CSIR | 93-169 | / | F | CCC | |||
→ More Compressor Please Click to Contact Us!
Company Profile
Certifications
With abundant technique force,we have our own researching, developing, manufacturing, inspecting and testingcenters, and imported the international advanced high-tech equipments. Our company has passed the ISO9001,ISO14001,OHS18001 international management system certificates. The products have got UL,ETL,CE,CB,and CCC certificates. Our products are not only selling strongly in more than 30 provincesand municipality,but also largely exporting to Europe,America,Australia,Middle East, Africa and South Asia. We have won an excellent reputation from the customers and friends by our product quality, price versus performance ratio and service.
FAQ
Q1: Are you a manufacturer or trader?
A1: ZHangZhoug Maidi Refrigeration Technology Co., Ltd. is a Hi-tech enterprise. We own the standard plant and office building which covering 21, 000 square meters. With abundant technique force, we have our own researching, developing, manufacturing, inspecting and testing centers, and imported the international advanced equipments.
Q2: How to match sikelan compressor to refrigeration?
A2: We have a professional team of engineers who provide technical support and online guidance on product installation and replacement.
Q3: How do you ensure quality?
A3: We have a dedicated product research and testing center with authoritative quality management system certification: ISO9001/ISO14001/OHS18001.
Q4:What’s CHINAMFG compressor usage scenario?
Q4:Our product could use in mobile applications e.g. cooling boxes,vans,boats, etc,water dispensers, minibar, refrigerators,freezer, ice maker, beers coolers, merchandisers, dehumidifier, refrigerated islands and kitchen freezers.
Q5: How much does a refrigeration part cost?
A5: Factory price for you, not cheapest but the competitive price with good quality.
Q6:What’s voltage CHINAMFG compressor available?
Q6:We have 220-240v and 110-120v for 50hz-60hz in AC compressor. And we have 12/24v/48v in DC Compressors. Depend on customer requirements.
Q7:What certifications do CHINAMFG have?
A7:We have UL, CCC, CE, CB, ETL, TUV, RoHS certifications in compressor.
Q8:What’s our CHINAMFG competitive advantages?
A8:a)More compressor model—–We have DC compressor, AC compressor and frequency conversion series compressor.
b)Lower noisy about compressor
c)Stable quality—–Coming from good material and technology.
d)Good service —–Satisfaction service before and after sale.
| Service après-vente : | Technical Support |
|---|---|
| Garantie: | 1 Year |
| Lubrication Style: | Lubricated |
| Exemples : |
US$ 34/Piece
1 pièce (commande minimale) | Commander un échantillon |
|---|
| Personnalisation : |
Disponible
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Frais d'expédition :
Frais de transport estimés par unité. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
Quel est le rendement énergétique des compresseurs d'air modernes ?
L'efficacité énergétique des compresseurs d'air modernes s'est considérablement améliorée grâce aux progrès technologiques et de conception. Voici un aperçu détaillé des caractéristiques et des facteurs qui contribuent à l'efficacité énergétique des compresseurs d'air modernes :
Technologie d'entraînement à vitesse variable (VSD) :
De nombreux compresseurs d'air modernes utilisent la technologie de variateur de vitesse (VSD), également appelée variateur de fréquence (VFD). Cette technologie permet au moteur du compresseur d'adapter sa vitesse à la demande en air comprimé. En ajustant la vitesse du moteur au débit d'air requis, les compresseurs VSD évitent une consommation d'énergie excessive pendant les périodes de faible demande, ce qui engendre des économies d'énergie importantes par rapport aux compresseurs à vitesse fixe.
Réduction des fuites d'air :
Les fuites d'air sont fréquentes dans les systèmes d'air comprimé et peuvent engendrer un gaspillage d'énergie considérable. Les compresseurs d'air modernes sont souvent dotés d'une étanchéité améliorée et de systèmes de contrôle avancés afin de minimiser les fuites. En réduisant ces fuites, le compresseur maintient plus efficacement des niveaux de pression optimaux, ce qui permet de réaliser des économies d'énergie.
Conception de moteur efficace :
Le moteur d'un compresseur d'air joue un rôle crucial dans son efficacité énergétique. Les compresseurs modernes intègrent des moteurs électriques à haut rendement qui respectent, voire dépassent, les normes d'efficacité énergétique en vigueur. Ces moteurs sont conçus pour minimiser les pertes d'énergie et fonctionner de manière plus efficace, réduisant ainsi la consommation électrique globale.
Systèmes de contrôle optimisés :
Les compresseurs d'air modernes sont équipés de systèmes de contrôle avancés qui optimisent leurs performances et leur consommation d'énergie. Ces systèmes surveillent différents paramètres, tels que la pression, la température et le débit d'air, et adaptent le fonctionnement du compresseur en conséquence. En contrôlant précisément la puissance du compresseur pour répondre à la demande, ils garantissent un fonctionnement efficace et économe en énergie.
Stockage et distribution de l'air :
Des systèmes efficaces de stockage et de distribution d'air sont essentiels pour minimiser les pertes d'énergie dans les réseaux d'air comprimé. Les compresseurs d'air modernes intègrent souvent des réservoirs de stockage d'air correctement dimensionnés et isolés, ainsi que des réseaux de tuyauterie bien conçus qui réduisent les pertes de charge et les transferts de chaleur. Ces mesures contribuent à assurer une alimentation en air comprimé constante et efficace dans l'ensemble du système, limitant ainsi le gaspillage d'énergie.
Gestion et surveillance de l'énergie :
Certains compresseurs d'air modernes sont équipés de systèmes de gestion et de surveillance de l'énergie qui fournissent des données en temps réel sur la consommation énergétique et les performances. Ces systèmes permettent aux opérateurs d'identifier les gaspillages d'énergie, d'optimiser les réglages du compresseur et de mettre en œuvre des pratiques d'économie d'énergie.
Il est important de noter que l'efficacité énergétique d'un compresseur d'air dépend également de facteurs tels que le modèle, la taille et l'application. Les fabricants fournissent généralement des indices ou des spécifications d'efficacité énergétique pour leurs compresseurs, ce qui facilite la comparaison des différents modèles et le choix de l'option la plus performante pour une application donnée.
De manière générale, les compresseurs d'air modernes intègrent diverses technologies et éléments de conception permettant d'économiser l'énergie et d'améliorer leur efficacité. Investir dans un compresseur d'air écoénergétique permet non seulement de réduire les coûts d'exploitation, mais aussi de contribuer aux efforts de développement durable en minimisant la consommation d'énergie et en réduisant les émissions de carbone.
.webp)
Comment mesure-t-on la pression de l'air dans les compresseurs d'air ?
La pression de l'air dans les compresseurs est généralement mesurée en utilisant l'une des deux unités courantes suivantes : la livre par pouce carré (PSI) ou le bar. Voici une brève explication de la façon dont la pression de l'air est mesurée dans les compresseurs :
1. Livres par pouce carré (PSI) : Le PSI est l'unité de mesure de pression la plus couramment utilisée pour les compresseurs d'air, notamment en Amérique du Nord. Il représente la force exercée par une livre-force sur une surface d'un pouce carré. Les manomètres des compresseurs d'air affichent généralement la pression en PSI, ce qui permet aux utilisateurs de la contrôler et de l'ajuster en conséquence.
2. Bar: Le bar est une autre unité de pression couramment utilisée pour les compresseurs d'air, notamment en Europe et dans de nombreuses autres régions du monde. C'est une unité de pression du système métrique équivalente à 100 000 pascals (Pa). Certains compresseurs d'air sont équipés de manomètres affichant la pression en bars, offrant ainsi une option de mesure alternative aux utilisateurs de ces régions.
Pour mesurer la pression d'air dans un compresseur, un manomètre est généralement installé sur la sortie du compresseur ou sur le réservoir. Ce manomètre est conçu pour mesurer la force exercée par l'air comprimé et afficher la valeur dans l'unité spécifiée, par exemple en PSI ou en bar.
Il est important de noter que la pression d'air indiquée sur le manomètre correspond à la pression en un point précis du système du compresseur, généralement à la sortie ou au niveau du réservoir. La pression réelle au point d'utilisation peut varier en raison de facteurs tels que la chute de pression dans les conduites d'air ou les restrictions dues aux raccords et aux outils.
Lors de l'utilisation d'un compresseur d'air, il est essentiel de régler la pression au niveau approprié à l'application prévue. Les exigences de pression varient selon les outils et équipements, et un dépassement de la pression recommandée peut entraîner des dommages ou un fonctionnement dangereux. La plupart des compresseurs d'air permettent à l'utilisateur de régler la pression de sortie à l'aide d'un régulateur ou d'un système de contrôle similaire.
Un contrôle régulier de la pression d'air dans un compresseur est essentiel pour garantir des performances optimales, une efficacité maximale et un fonctionnement sûr. En comprenant les unités de mesure et en utilisant correctement les manomètres, les utilisateurs peuvent maintenir les niveaux de pression d'air souhaités dans leurs systèmes de compresseurs.


editor by CX 2023-10-16