China wholesaler 23 Bar Diesel Well Drilling Screw High Pressure Stationary Air Compressor in China small air compressor

Product Description

Product Description

Kaishan Brand KSZJ-29/23G Diesel Screw Air Compressor

Water well drilling rig / Deep well special diesel engine

Kaishan Brand 29/23 23bar Diesel Screw Air Compressors compressor for water well drilling widly use for drilling platforms, offshore oil platforms, refineries, chemical plants, gas stationsoil tanks, tunnel, ship and other inflammable and explosive places and shipbuildingindustries use.
 

Kaishan Brand KSZJ-29/23G
Type  Screw Air Compressor
Item KSZJ-29/23G
Rated FAD 29 m³/min
Rate Pressure 23 bar
Diesel type Diesel
Engine Power 288KW
Move type Stationary
Dimensions (L*W*H) 3500*1950*2030mm
Weight 4050KG

Detailed Photos

 

Packaging & Shipping

 

Company Profile

FAQ

Q1: Are you factory or trade company?
A1: We are factory. And we have ourselves trading company.

Q2: What the exactly address of your factory?
A2: Our company is located in Kaixuan Road ,Economic Zone HangZhou, ZHangZhoug, China

Q3: Warranty terms of your machine?
A3: One year warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.

Q5: What about the voltage of products? Can they be customized?
A5: Yes, of course. The voltage can be customized according to your equirement.

Q6: Which payment term can you accept?
A6: 30% T/T in advanced, 70% T/T against the B/L copy.

 

After-sales Service: 1 Year
Lubrication Style: Lubricated
Cooling System: Oil Cooling
Power Source: Diesel Engine
Cylinder Position: Angular
Structure Type: Closed Type
Customization:
Available

|

air compressor

What is the role of air compressors in power generation?

Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

1. Combustion Air Supply:

Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

2. Instrumentation and Control:

Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

3. Cooling and Ventilation:

In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

4. Cleaning and Maintenance:

Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

5. Pneumatic Tools and Equipment:

In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

6. Nitrogen Generation:

Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

7. Start-up and Emergency Systems:

Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

What is the purpose of an air compressor?

An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:

1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.

2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.

3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.

4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.

5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.

6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.

Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.

China wholesaler 23 Bar Diesel Well Drilling Screw High Pressure Stationary Air Compressor in China   small air compressor China wholesaler 23 Bar Diesel Well Drilling Screw High Pressure Stationary Air Compressor in China   small air compressor
editor by CX 2023-10-17

China Standard CE Qualified Low Noise 7bar 80L/Min Oil-Free Air Compressor with Hot selling

Product Description

CHINAMFG oil-less air compressor is specially designed to support AAS, ICP-OES, ICP-MS, Termovap Sample Con centrator, etc. with pure, dry compressed air and constant pressure.
 

 

Note: 
AA oil free air compressor no need manual drainage, can be constantly use;
AA*A oil free air compressor adopts electronic water removal, mainly used in high temperature, high humidity area, can ensure that the outlet is dry. 

Functions and Features:
Double cylinder piston compressor, stable and reliable operation, put out pure oil without lubri cate;
Original air-cooled screw centrifugal dehydrator, cooling of compressed air rapidly, centrifugal separation of condensate;
Optional electronic dehydrator, water removal thoroughly;
Stainless steel storage sink which can prevent rust;
Vertical design, independent suspension damping mechanism, nest egg type sound-absorbing sponge, less vibration, lower noise;
Triple filters makes gas sophisticate and pure.

Specification:

model Displacement Press power Main character Overall Dimension
W×D×H mm
ACA320 20L/min 0.05~3kg 250W Oil-free dual-piston compressor     box-type silent 400×300×635
AA320 20L/min 0.05~3kg 260W Automatic drainage 430×335×676
AA320A 20L/min 0.05~3kg 320W Automatic drainage, internal electronic water removal 430×335×676
AA530 30L/min 0.05~5kg 600W Automatic drainage 500×335×706
AA530A 30L/min 0.05~5kg 660W Automatic drainage, internal electronic water removal 500×335×706
AA530Z 50L/min 0.05~5.5kg 800W Automatic drainage, high efficiency 500×335×706
AA650 50L/min 0.05~6kg 1250W Automatic drainage. 560×400×830
AA780 80L/min 0.05~7kg 1550W Automatic drainage. 560×400×830

After-sales Service: 1 Year
Warranty: 1 Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Horizontal
Customization:
Available

|

air compressor

Can air compressors be used for shipbuilding and maritime applications?

Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:

1. Pneumatic Tools and Equipment:

Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.

2. Painting and Surface Preparation:

Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.

3. Pneumatic Actuation and Controls:

Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.

4. Air Start Systems:

In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.

5. Pneumatic Conveying and Material Handling:

In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.

6. Air Conditioning and Ventilation:

Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.

These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.

air compressor

What is the role of air compressors in manufacturing and industrial processes?

Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:

1. Pneumatic Tools and Equipment:

Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.

2. Automation and Control Systems:

Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.

3. Air Blowing and Cleaning:

Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.

4. Air Separation and Gas Generation:

Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.

5. HVAC Systems:

Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.

6. Air Compression for Storage and Transport:

Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.

7. Process Instrumentation:

Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.

8. Material Handling and Pneumatic Conveying:

In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.

Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

China Standard CE Qualified Low Noise 7bar 80L/Min Oil-Free Air Compressor   with Hot sellingChina Standard CE Qualified Low Noise 7bar 80L/Min Oil-Free Air Compressor   with Hot selling
editor by CX 2023-10-17

China manufacturer Household Air Cooling Dehumidifier M/Hbp R134A Reciprocating Hermetic Compressor portable air compressor

Product Description

Product Description

M/HBP R134A (110V-120V~60HZ/220V-240V~50HZ) Refrigeration Compressors Special for Home Dehumidifiers

Adopting high-quality components, SIXIHU (WEST LAKE) DIS. refrigeration compressors are always environmental friendly, high efficient, and widely praised by customers in the refrigeration industry due to its low noise, high performance, and long service life.

Features:

1. Low Noise:

– There are 2 welding methods for the compressor casing: flange butt welding or insert welding. The thickness, shape, and internal cavity size of the shell have a significant impact on noise.
– There are 2 fixing methods for the movement: suspension spring type and seat spring type, with the seat spring compressor having less noise and vibration.

2. High Performance:

– Equipped with professional valve components. The valve group is the heart of the compressor and plays a significant role in the performance of the compressor.

3. Long Service Life:

– The crankshaft and connecting rod have good performance and are resistant to friction.

4. High Efficiency & Eco-friendly:
– As the power in a hermetic compressor, an electric motor converts electrical energy into mechanical energy, driving the piston to compress refrigerant vapor, enabling the refrigerant to circulate in the refrigeration system and achieve the purpose of refrigeration

 

Product Parameters

Compressor Technical Data: M/HBP R134A 110V-120V~60HZ/220V-240V~50HZ

Serial Model HP V/Hz Displacement (cm3) Cooling Capacity    ASHRAE Motor type Starting Device Starting capacitor (uF) Running capacitor (uF) Cooling Certificate
-15ºC(5F) -10ºC(10F) -5ºC(23F) 0ºC(32F) Test Conditions: 7.2ºC(45F) 10ºC(50F)
W Btu/h W Btu/h W Btu/h W Btu/h Capacity (W) Capacity (Btu/h) lnput Power(W) Current  (A) COP   (W/W) EER    (Btu/Wh) W Btu/h
L GQR30TC 1/10 220-240V/50-60Hz 3.0  97 331  125 427  145 495  185 631  245 836  129 0.9 1.9 6.48  275 938  RSIR PTC/Heavy Hammer PTC/Current    Starting   Relay / / F CCC
GQR35TC 1/9 3.5  135 461  175 597  195 665  265 904  385 1314  185 1.1 2.1 7.17  420 1433  RSIR / / F CCC
GQR45TC 1/6 4.5 176 601  230 785  280 955  350 1194  450 1535  204 1.2 2.2 7.51  485 1655  RSIR / / F CCC
ML GQR55TC 1/6+ 5.5 245 836  310 1058  390 1331  525 1791  575 1962  273 1.5 2.1 7.19  615 2098  RSIR / / F CCC
GQR60TC 1/4 6.5 335 1143  435 1484  545 1860  665 2269  705 2405  306 1.9 2.3 7.86  745 2542  RSIR / / F CCC
GQR70TC 1/4 7.0  370 1262  480 1638  595 2030  720 2457  765 2610  364 2.1 2.1 7.17  805 2747  RSIR / / F CCC
MQ GQR80TC 1/4+ 8.0  420 1433  550 1877  680 2320  810 2764  855 2917  388 2.2  2.2 7.52  895 3054  CSIR Heavy Hammer Current    Starting   Relay 80 / F CCC
GQR90TC 1/3- 9.0  474 1617  621 2119  768 2620  910 3105  955 3258  434 2.3 2.2 7.51  995 3395  CSIR 80 / F CCC
GQR11TC 3/8 11.0  536 1829  702 2395  868 2962  1034 3528  1079 3682  469 2.9 2.3 7.85  1119 3818  CSIR 80 / F CCC
MD GQR12TC 3/8+ 12.0  606 2068  793 2706  981 3347  1168 3985  1208 4122  549 3.4 2.2 7.51  1248 4258  CSIR 80 / F CCC
GQR14TC 1/2 14.0  685 2337  896 3057  1108 3780  1320 4504  1365 4657  593 3.6 2.3 7.85  1305 4453  CSIR 80 / F CCC
GQR16TC 1/2+ 16.0  754 2573  1012 3453  1252 4272  1492 5091  1535 5237  667 4.0  2.3 7.85  1575 5374  CSIR 80 / F CCC

Serial Model HP V/Hz Displacement (cm3) Cooling Capacity    ASHRAE Motor type Starting Device Starting capacitor (uF) Running capacitor (uF) Cooling Certificate
-15ºC(5F) -10ºC(10F) -5ºC(23F) 0ºC(32F) Test Conditions: 7.2ºC(45F) 10ºC(50F)
W Btu/h W Btu/h W Btu/h W Btu/h Capacity (W) Capacity (Btu/h) lnput Power(W) Current  (A) COP   (W/W) EER    (Btu/Wh) W Btu/h
L GQR30TCD 1/10 110-120V/60Hz 3.0  118 403  150 512  174 594  225 768  295 1007  134 1.8  2.2 7.51  340 1160  RSIR PTC/Heavy Hammer PTC/Current    Starting   Relay     / / F CCC
GQR35TCD 1/9 3.5  162 553  210 717  234 798  320 1092  465 1587  211 2.0  2.2 7.52  504 1720  RSIR / / F CCC
ML GQR45TCD 1/6 4.5 210 717  275 938  340 1160  420 1433  540 1842  245 2.1 2.2 7.52  580 1979  RSIR / / F CCC
GQR55TCD 1/6+ 5.5 310 1058  390 1331  480 1638  610 2081  665 2269  316 2.9 2.1 7.18  720 2457  RSIR / / F CCC
GQR60TCD 1/4 6.5 378 1290  510 1740  650 2218  731 2494  786 2682  341 3.5 2.3 7.86  841 2869  RSIR / / F CCC
GQR70TCD 1/4 7.0  430 1467  545 1860  750 2559  806 2750  862 2941  410 3.8 2.1 7.17  917 3129  RSIR / / F CCC
MQ GQR80TCD 1/4+ 8.0  470 1604  625 2133  820 2798  907 3095  964 3289  438 4.2 2.2 7.51  1019 3477  CSIR Heavy Hammer Current    Starting   Relay     93-169 / F CCC
GQR90TCD 1/3- 9.1 530 1808  695 2371  890 3037  1019 3477  1074 3664  488 3.8 2.2 7.51  1129 3852  CSIR 93-169 / F CCC
GQR11TCD 3/8 11.0  600 2047  772 2634  954 3255  1100 3753  1155 3941  502 5.2 2.3 7.85  1210 4129  CSIR 93-169 / F CCC
MD GQR12TCD 3/8+ 12.8  678 2313  872 2975  1034 3528  1270 4333  1325 4521  602 5.5 2.2 7.51  1380 4709  CSIR 93-169 / F CCC
GQR14TCD 1/2 14.2  758 2586  985 3361  1218 4156  1402 4784  1457 4971  633 5.8 2.3 7.85  1512 5159  CSIR 93-169 / F CCC
GQR16TCD 1/2+ 15.3  829 2829  1113 3798  1375 4692  1641 5599  1696 5787  737 6.0  2.3 7.85  1751 5974  CSIR 93-169 / F CCC

→ More Compressor Please Click to Contact Us!

Company Profile

 

Certifications

With abundant technique force,we have our own researching, developing, manufacturing, inspecting and testingcenters, and imported the international advanced high-tech equipments. Our company has passed the ISO9001,ISO14001,OHS18001 international management system certificates. The products have got UL,ETL,CE,CB,and CCC certificates. Our products are not only selling strongly in more than 30 provincesand municipality,but also largely exporting to Europe,America,Australia,Middle East, Africa and South Asia. We have won an excellent reputation from the customers and friends by our product quality, price versus performance ratio and service.

FAQ

Q1: Are you a manufacturer or trader?
A1: ZHangZhoug Maidi Refrigeration Technology Co., Ltd. is a Hi-tech enterprise. We own the standard plant and office building which covering 21, 000 square meters. With abundant technique force, we have our own researching, developing, manufacturing, inspecting and testing centers, and imported the international advanced equipments.

Q2: How to match sikelan compressor to refrigeration?
A2: We have a professional team of engineers who provide technical support and online guidance on product installation and replacement.

Q3: How do you ensure quality?
A3: We have a dedicated product research and testing center with authoritative quality management system certification: ISO9001/ISO14001/OHS18001.

Q4:What’s CHINAMFG compressor usage scenario?
Q4:Our product could use in mobile applications e.g. cooling boxes,vans,boats, etc,water dispensers, minibar, refrigerators,freezer, ice maker, beers coolers, merchandisers, dehumidifier, refrigerated islands and kitchen freezers.

Q5: How much does a refrigeration part cost?
A5: Factory price for you, not cheapest but the competitive price with good quality.

Q6:What’s voltage CHINAMFG compressor available?
Q6:We have 220-240v and 110-120v for 50hz-60hz in AC compressor. And we have 12/24v/48v in DC Compressors. Depend on customer requirements.

Q7:What certifications do CHINAMFG have?
A7:We have UL, CCC, CE, CB, ETL, TUV, RoHS certifications in compressor.

Q8:What’s our CHINAMFG competitive advantages?
A8:a)More compressor model—–We have DC compressor, AC compressor and frequency conversion series compressor.
   b)Lower noisy about compressor
   c)Stable quality—–Coming from good material and technology.
   d)Good service —–Satisfaction service before and after sale.

After-sales Service: Technical Support
Warranty: 1 Year
Lubrication Style: Lubricated
Samples:
US$ 34/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What is the role of air compressors in power generation?

Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

1. Combustion Air Supply:

Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

2. Instrumentation and Control:

Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

3. Cooling and Ventilation:

In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

4. Cleaning and Maintenance:

Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

5. Pneumatic Tools and Equipment:

In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

6. Nitrogen Generation:

Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

7. Start-up and Emergency Systems:

Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

air compressor

What is the energy efficiency of modern air compressors?

The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:

Variable Speed Drive (VSD) Technology:

Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.

Air Leakage Reduction:

Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.

Efficient Motor Design:

The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.

Optimized Control Systems:

Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.

Air Storage and Distribution:

Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.

Energy Management and Monitoring:

Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.

It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.

Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.

air compressor

How is air pressure measured in air compressors?

Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:

1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.

2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.

To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.

It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.

When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.

Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.

China manufacturer Household Air Cooling Dehumidifier M/Hbp R134A Reciprocating Hermetic Compressor   portable air compressorChina manufacturer Household Air Cooling Dehumidifier M/Hbp R134A Reciprocating Hermetic Compressor   portable air compressor
editor by CX 2023-10-16

China supplier Economical Water Cooling High Pressure Air Compressor Manufacturer portable air compressor

Product Description

High Pressure Electric/Diesel Air Booster/Air Compressor

Introductions:

Our products have complete varieties and specifications. From the compressor type, it is divided into mobile type, fixed type, vehicle-mounted type, skid-mounted type and so on. Compressed media include air, natural gas, liquefied petroleum gas, hydrogen, recycled gas, nitrogen, ammonia, propylene, biogas, coalbed methane, carbon dioxide, etc. From the cylinder lubrication method, it is divided into oil lubrication and oil-free lubrication. From the compression type, it is divided into reciprocating piston type and screw type. Products are widely used in metallurgical machinery manufacturing, urban construction, steel, national defense, coal, mining, geology, natural gas, petroleum, petrochemical, chemical, electric power, textile, biology, medicine, glass and other industries.
 

Main features:

1. The compressor is manufactured by air-cooling and water-cooling technology, with high reliability and long service life.
2. The compressor unit has a high degree of automation. The unit operation is controlled by a programmable controller PLC and is equipped with multiple protections.
3. Automatic shutdown protection, unloading restart, automatic drainage, and alarm for insufficient oil.
 

Flow rate ≤50 Nm³/min
Pressure ≤40 MPa
Medium air, nitrogen, carbon dioxide, natural gas
Control  PLC automatic control
Drive mode  electric motor, diesel engine
Cooling method air cooling, water cooling, mixed cooling
Installation method mobile type, fixed type, vehicle-mounted type, skid-mounted type

Main Technical Parameters:
 

NO.  Model  Rotating Speed
(r/min) 
Intake Pressure
(Mpa) 
Exhaust Pressure
(Mpa)
Exhaust Volume
(Nm³/min)
Dimension (L*W*H)mm Drive Power/Shaft Power(KW) Weight (T) Remark
1 SF-10/150 1330 Atmospheric Pressure 15 10 5500*2000*2300 227/139 6 Stationary Diesel Engine
2 SF-10/150 1330 15 10 7500*2300*2300 227/139 8 Container Skid Mounted Diesel Engine
3 SF-10/250 1330 25 10 5500*2000*2300 227/173 6 Stationary Diesel Engine
4 SF-10/250 1330 25 10 7500*2300*2300 227/173 8 Container Skid Mounted Diesel Engine
5 SF-10/250 1330 25 10 15710*2496*3900 227/173 21.98 Vehicular
6 WF-10/60 1000 6 10 6000*2200*2200 135/110 6 Container Skid Mounted Diesel Engine
7 W-10/350 980 35 10 15710*2496*3900 303/187 21.98 Vehicular
8 WF-0.9/3-120 980 0.3 12 0.9 5100*2000*2350 75/50 5.4 Container Skid Mounted Diesel Engine
9 SF-1.2/24-150 1200 2.4 15 1.2 7500*2300*2415 303/195 8.6 Container Skid Mounted Diesel Engine
10 W-0.86/17-350 1000 1.7 35 0.86 8500*2500*2300 277/151 12 Container Skid Mounted Diesel Engine
11 W-1.25/11-350 980 1.1 35 1.25 8000*2500*2500 185/145.35 15 Container Skidding Motor
12 LG.V-25/150 Screw 2279 Piston 800 Atmospheric Pressure 15 25 7000*2420*2300 355 16 Container Skidding Motor

 

 Model  Flow Pressure  Stages Cooling Type Rotating Speed  Power
m³/min Mpa r/min
SVF-15/100 15 10 1+2 Air Cooling 1150 Diesel series
SVF-18/100 18 10 1+2 1150
SVF-20/120 20 12 1+2 1150
LGW-15/100 15 10 1+2 1150
LGW-15/150 15 15 1+3 1150
LGW-15/200 15 20 1+3 1150
LGW-20/100 20 10 1+2 1150
LGW-20/150 20 15 1+2 1150
LGS-24/150 24 15 1+2 1150
LGS-30/150 30 15 1+2 1150
LGW-25/150 25 15 1+2 Water cooling 980 Electric tandem
LGV-25/250 25 25 1+3 740 Diesel series
LGW-12/275 12 27.5 1+3 980 Electric tandem
LGV-15/85 15 8.5 1+2 980
LGV-15/250 15 25 1+3 Air Cooling 740
LGV-15/350 15 35 1+4 Water cooling 740
LGV-15/400 15 40 1+4 740
LGV-12.5/400 12.5 40 1+4 740
LGV-15/100 15 10 1+2 740

Application Industry:

1. Suitable for oilfield pressure test, line sweeping, gas lift, well drilling and other projects.
2. Used in air tightness testing, air tightness inspection, pressure test, strength inspection, air tightness verification and other fields of various high-pressure vessels or pressure vessels such as gas cylinders, steel cylinders, valves, pipelines, pressure meters, high-pressure boilers, etc. .
3. On-board pressure testing, pressurization, pipeline pressure testing, line sweeping, gas lift and other projects in oil exploration.
4. Sand blasting and rust removal, parts dust removal, high pressure phosphorus removal, anti-corrosion engineering, well drilling operations, mountain quarrying.
5. For hydropower station turbine control and high-voltage power grid air short-circuit device for arc extinguishing.
6. Provide air source for large and medium-sized bottle blowing machines.

Principle: Reciprocating Compressor
Configuration: Portable
Control: PLC Automatic Control
Pressure: 0.1MPa-40MPa
Installation Method: Trailer-Mounted Mobile, Container Skid-Mounted, Fi
Cooling Method: Air Cooling, Water Cooling, Mixed Cooling

air compressor

Are there special considerations for air compressor installations in remote areas?

Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:

1. Power Source:

Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.

2. Environmental Conditions:

Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.

3. Accessibility and Transport:

Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.

4. Maintenance and Service:

In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.

5. Fuel and Lubricants:

For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.

6. Noise and Environmental Impact:

Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.

7. Communication and Remote Monitoring:

Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.

By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China supplier Economical Water Cooling High Pressure Air Compressor Manufacturer   portable air compressorChina supplier Economical Water Cooling High Pressure Air Compressor Manufacturer   portable air compressor
editor by CX 2023-10-16

China OEM Direct Driven Portable Industrial Oilless Rotary Screw Air Compressor Energy Saving High Efficiency Compressor with Air Dryer and Tank arb air compressor

Product Description

 

Model LGPM-10HP LGPM-15HP LGPM-20HP LGPM-30HP LGPM-50HP LGPM-60HP
Motor Power(KW) 7.5 11 15 22 37 45
Capacity/Pressure
(m3/min/MPa)
1.2/0.7 1.71/0.7 2.3/0.7 3.8/0.7 6.4/0.7 8.5/0.7
1.1/0.8 1.65/0.8 2.25/0.8 3.6/0.8 6.2/0.8 8.0/0.8
0.9/1.0 1.32/1.0 1.8/1.0 3.0/1.0 5.6/1.0 7.5/1.0
0.8/1.2 1.1/1.2 1.6/1.2 2.6/1.2 5.0/1.2 7.0/1.2
LubricLGPMing oil(L) 12 16 16 22 26 26
Noise db(A) 60-70±2 60-70±2 60-70±2 60-70±2 60-70±2 60-70±2
Length(mm) 780 1050 1050 1300 1470 1460
Width(mm) 600 700 700 850 1000 1000
Height(mm) 1571 1150 1150 1100 1380 1380
Weight(Kg) 215 335 335 465 630 825
 
Model LGPM-75HP LGPM-100HP LGPM-125HP LGPM-150HP LGPM-175HP LGPM-200HP
Motor Power(KW) 55 75 90 110 132 160
Capacity/Pressure
(m3/min/MPa)
10.5/0.7 13.2/0.7 16.2/0.7 21.0/0.7 24.6/0.7 31.0/0.7
10.0/0.8 13.0/0.8 15.8/0.8 20.0/0.8 23.0/0.8 30.0/0.8
8.5/1.0 10.9/1.0 14.0/1.0 18.0/1.0 21.0/1.0 26.0/1.0
7.6/1.2 9.8/1.2 12.8/1.2 16.0/1.2 18.8/1.2 22.0/1.2
LubricLGPMing oil(L) 54 54 72 90 90 90
Noise db(A) 70-76±2 70-76±2 70-76±2 70-76±2 70-76±2 70-76±2
Length(mm) 1900 1900 1900 2571 2571 2360
Width(mm) 1250 1250 1250 1590 1590 1610
Height(mm) 1600 1600 1600 1810 1810 1860
Weight(Kg) 1130 1230 1325 1520 1710 185

ZheJiang Compressor Import & Export Co.,Ltd. is located in the logistics capital of China, 1 of the important
birthplaces of Chinese civilization-HangZhou, ZheJiang Province.
With professinal manufacturing experience and first -class comprehensive scientific and technological strength of the talent team, as the energy-saving compressor system leader and remowed in the industry.
We specializes in R & D and sales of power frequency ,permanent magnet frequency conversion ,two -stage compressor permanent magnet frequency conversion ,low -voltage and mobile screw air compressor . With a deep industry background , 1 step ahead ambition .
With the professional enthusiasm for screw air compressor , team innovation , to meat the challenges of enterprise’s
own determination and the rigorous attitude of excellence,products are strictly in accordance with IOS 9001 international quality procedures,to provide customers with energy -saving and reliable products .
We warmly welcomes people from all around the world to visit the company to guide the establishment of a wide range of business contacts and cooperation .
Choosing ZheJiang Compressor Import & Export Co.,Ltd.is to choose quality and service ,choose culture and taste ,choose a permanent and trustworthy partner !

RFQ:

Q1: Are you factory or trade company?
A1: We are factory. Please check Our Company Profile.

Q2: What the exactly address of your factory?
A2: Xihu (West Lake) Dis. Innovation Park, Zaoyuan Town, HangZhou, ZheJiang , China

Q3: Warranty terms of your machine?
A3: 18 months warranty for the machine,technical support according to your needs.

Q4: Will you provide some spare parts of the machines?
A4: Yes.

Q5: How long will you take to arrange production?
A5: Deliver standard goods within 30days, Other customized goods is TBD.

Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.

 

Lubrication Style: Oil-less
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Horizontal
Structure Type: Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

How are air compressors used in the food and beverage industry?

Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:

1. Packaging and Filling:

Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.

2. Cleaning and Sanitization:

Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.

3. Cooling and Refrigeration:

In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.

4. Aeration and Mixing:

Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.

5. Pneumatic Conveying:

In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.

6. Quality Control and Testing:

Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.

7. Air Agitation:

In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.

It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.

By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

Can air compressors be used for automotive applications?

Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:

1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.

2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.

3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.

4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.

5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.

6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.

7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.

When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.

Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.

China OEM Direct Driven Portable Industrial Oilless Rotary Screw Air Compressor Energy Saving High Efficiency Compressor with Air Dryer and Tank   arb air compressorChina OEM Direct Driven Portable Industrial Oilless Rotary Screw Air Compressor Energy Saving High Efficiency Compressor with Air Dryer and Tank   arb air compressor
editor by CX 2023-10-12

China high quality Single Online Support, Field Maintenance CHINAMFG Screw Diesel Portable Air Compressor air compressor for sale

Product Description

Product Description

Product Features

1. The enlarged plastic air filter is designed to be used for more than 5000 hours with the filter element accuracy of 3 microns. Dry, heavy duty, long life design, easy to clean and replace.

2. SAE standard stainless steel pipe design, low resistance, strong corrosion resistance, superior performance, completely eliminate oil leakage, air leakage, and water leakage problems.

3. Adopting the most advanced host machine in China, adhering to the exquisite manufacturing technology of Germany, adopting the low-pressure and high-efficiency tooth shape with the highest efficiency, the optimized runner design, the big rotor, low speed, high efficiency and high reliability provide your air compressor with a powerful heart, thus achieving efficiency and energy-saving synchronization.

4. The enlarged horizontal structure cooler not only improves the cooler performance, but also facilitates the maintenance, thoroughly solving the unit high temperature problem

5. Increased oil and gas storage tank to ensure the safe and reliable operation.

6. Oversized fuel tank ensures all-day operation of diesel.

7. Oversized fuel filters ensure the cleanliness of diesel entering the engine. Extend the service life of diesel engine.

8. Super large, super strong walking system, strong bearing, and mobile flexibility.

Model

 

HF19/18(J)

HF20/18(J)

Compressor

Type

 

Screw two-stage compression air compressor

Screw two-stage compression air compressor

Gas displacement

m3/min

19

20

Discharge pressure

bar

18

18

Drive mode

 

Direct coupling, diesel engine driven

Direct coupling, diesel engine driven

Oil and gas tank volume

L

150

150

Lubricating oil capacity

L

90

90

Diesel engine

Brand

 

 

 

Model

 

6CTA8.3

6CTA8.3

Type

 

Liquid cooled, 4 stroke, direct injection

Liquid cooled, 4 stroke, direct injection

Air cylinder QTY

 

6

6

Rated power

kw

194

194

Rated rotation speed

rpm

1900

2200

Lubricating oil capacity

L

24

24

Cooling water consumption

L

70

70

Fuel tank volume

L

380

380

Dimension & weight

Length

mm

4200

4200

Width

mm

1950

1980

Height

mm

2100

2100

Net weight

kg

4000

4000

Outlet exhaust valve

 

1*G2″, 1*G1″

1*G2″, 1*G1″

Optional for preheater

Company Profile

FAQ

1. Are you a trading company or a manufacturer?
We are a professional manufacturer. Our factory mainly produces water well drilling rigs, core drilling rigs, down-the-hole drilling rigs, pile drivers, etc. The products have been exported to hundreds of countries around the world and enjoy a high reputation all over the world.

2. How is the quality of your machine?
Our products pass strict quality inspections before they leave the factory to ensure that they are qualified before they are shipped.

3. How to inspect the goods?
1) Support customers to come to the factory for on-site inspection.
2) Support customers to designate third-party companies to inspect goods.
3) Support video inspection.

4. Do you have after-sales service?
Yes, we have a dedicated service team that will provide you with professional technical guidance. If you need, we can send our engineers to your workplace and provide training for your employees.

5. How about quality assurance?
We provide a one-year quality guarantee for the main machine of the machine.

6. How long is your delivery cycle?
1) In the case of stock, we can deliver the machine within 7 days.
2) Under standard production, we can deliver the machine within 15-20 days.
3) In the case of customization, we can deliver the machine within 20-25 days.

 

After-sales Service: Online Support,Field Maintenance
Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Water Cooling
Power Source: Diesel Engine
Structure Type: Open Type
Samples:
US$ 26000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What role do air dryers play in compressed air systems?

Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:

1. Moisture Removal:

Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.

2. Contaminant Removal:

In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.

3. Protection of Equipment and Processes:

By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.

4. Improved Productivity and Efficiency:

Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.

5. Compliance with Standards and Specifications:

Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.

By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.

air compressor

What is the energy efficiency of modern air compressors?

The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:

Variable Speed Drive (VSD) Technology:

Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.

Air Leakage Reduction:

Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.

Efficient Motor Design:

The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.

Optimized Control Systems:

Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.

Air Storage and Distribution:

Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.

Energy Management and Monitoring:

Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.

It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.

Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.

air compressor

What maintenance is required for air compressors?

Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:

1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.

2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.

3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.

4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.

5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.

6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.

7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.

8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.

9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.

10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.

Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.

China high quality Single Online Support, Field Maintenance CHINAMFG Screw Diesel Portable Air Compressor   air compressor for saleChina high quality Single Online Support, Field Maintenance CHINAMFG Screw Diesel Portable Air Compressor   air compressor for sale
editor by CX 2023-10-12

China Custom 1900071292 Air Compressor Control Panel for CHINAMFG with Hot selling

Product Description

Air Compressor Control Panel for Atlas Copco
Product Description

pack your goods?
There is 3 kinds of ways to packed the goods, which depends on your requirement
1. Packed with original package
2. Packed with your design package
3. Packed with our blank package, below is the example for referenc

Air Compressor Control Panel for Atlas Copco FAQ
Q1: How can I get the quotation?
A: you can advise us the part number for checking, and we will quote to you soon by email

Q2: What kind of ways for transportation ?
A:In general by air, sea or Express.(like DHL,Fedex,TNT,etc.)

Q3: How do I know the quality of productions?
A:We have a strict series of quality control, and we have perfect after service system, which can help you to solve the problem soon

Q4: If i want to change model,size,package,etc. How can I do?
A:You can contact us by or mail, and we will revise according to your requirement

Q5: What is the terms of payment ?
A: T/T, Western Union, paypal

Warranty: 1 Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Closed Type
Customization:
Available

|

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

What is the role of air compressors in manufacturing and industrial processes?

Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:

1. Pneumatic Tools and Equipment:

Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.

2. Automation and Control Systems:

Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.

3. Air Blowing and Cleaning:

Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.

4. Air Separation and Gas Generation:

Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.

5. HVAC Systems:

Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.

6. Air Compression for Storage and Transport:

Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.

7. Process Instrumentation:

Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.

8. Material Handling and Pneumatic Conveying:

In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.

Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.

air compressor

Are there portable air compressors available for home use?

Yes, there are portable air compressors specifically designed for home use. These portable models offer convenience, versatility, and ease of use for various tasks around the house. Here are some key points about portable air compressors for home use:

1. Compact and Lightweight: Portable air compressors are typically compact and lightweight, making them easy to transport and store. They are designed with portability in mind, allowing homeowners to move them around the house or take them to different locations as needed.

2. Electric-Powered: Most portable air compressors for home use are electric-powered. They can be plugged into a standard household electrical outlet, eliminating the need for gasoline or other fuel sources. This makes them suitable for indoor use without concerns about emissions or ventilation.

3. Versatile Applications: Portable air compressors can be used for a wide range of home applications. They are commonly used for inflating tires, sports equipment, and inflatable toys. They are also handy for operating pneumatic tools such as nail guns, staplers, and paint sprayers. Additionally, portable air compressors can be used for cleaning tasks, powering airbrushes, and other light-duty tasks around the house.

4. Pressure and Capacity: Portable air compressors for home use typically have lower pressure and capacity ratings compared to larger industrial or commercial models. They are designed to meet the needs of common household tasks rather than heavy-duty applications. The pressure and capacity of these compressors are usually sufficient for most home users.

5. Oil-Free Operation: Many portable air compressors for home use feature oil-free operation. This means they do not require regular oil changes or maintenance, making them more user-friendly and hassle-free for homeowners.

6. Noise Level: Portable air compressors designed for home use often prioritize low noise levels. They are engineered to operate quietly, reducing noise disturbances in residential environments.

7. Cost: Portable air compressors for home use are generally more affordable compared to larger, industrial-grade compressors. They offer a cost-effective solution for homeowners who require occasional or light-duty compressed air applications.

When considering a portable air compressor for home use, it’s important to assess your specific needs and tasks. Determine the required pressure, capacity, and features that align with your intended applications. Additionally, consider factors such as portability, noise level, and budget to choose a suitable model that meets your requirements.

Overall, portable air compressors provide a practical and accessible compressed air solution for homeowners, allowing them to tackle a variety of tasks efficiently and conveniently within a home setting.

China Custom 1900071292 Air Compressor Control Panel for CHINAMFG   with Hot sellingChina Custom 1900071292 Air Compressor Control Panel for CHINAMFG   with Hot selling
editor by CX 2023-10-11

China high quality 0.67m3/Min Auto Tools Piston Compressor Air Pump Compressor air compressor for car

Product Description

Air Compressor
Stock in Africa,UAE,Singapore

Model HP KW Flux(M3/Min) Max Pressure
(Bar)
Tank
(L)
Package
(L*W*H mm)
Weight
(KG)
W-0.67/8 10 4 0.67 8 300 1550*525*1120 170
  1. 24 HOURS CONINUOUS RUNNING
     
    The J-compressor can work day and night without pause, because of the round angle modeling air pump and enlarged crankshaft and connecting rod.
     
  2. 20% MORE SUPER DISPLACEMENT
     
    This J-compressor’s s displacement is 20% larger than common compressor, because of the heavy-duty bottom support, larger crank case, 1 processed bearing hole match with CHINAMFG bearing, double valve plate and so on.
     
  3. HIGH QUALITY SPARE PARTS
     
    Equip with pure copper discharge pipe, release pipe and copper check valve spool, imported material triangle belt, enlarged air filter, Swedish screw steel valve clack, higher precision of piston and piston ring, and so on
     
  4. HIGH SAFETY VESSEL
     
    Modern and advanced automatic electrical production line promise excellent quality.
     
    Imported LINCOLN welding machine guarantees the smooth welding without undercut
     
    Weekly hydrostatic burst test uses 5 times design pressure to check steel quality and welding safety.
     
  5. GOOD QUALITY MOTOR
     
    10%-30% more sheet motor staor and rotor. 15% low-voltage start-up is 15% lower than standars voltage of your country. Temperature rises95K to support long time working.

HangZhou CHINAMFG Machinery Co., Ltd., founded in 2008, is an integrated enterprise specilizing in the design, production, sales, and service of auto maintenance equipment. We not only sell products, but also provide project package services, including project layout design, one-stop purchasing, installation and training, have established cooperative relations with many demestic and foreign customers.

We have operations and experience centers in Africa, the Middle East, and Singapore that provide localized services.

Haosail’s products are passed JINGRUI TEST CENTER’s quality management, which can achieve quality traceability and make customers feel at ease.

Our philosophy: Looking CHINAMFG to the establishment of cooperation with customers, including product sales agent, project contract supporting. Haosail, your auto-repair partner from zero to success.

Q: Why to choose Haosail?

1. Compared to the factory which can only provide single product, we can offer you one-stop purchasing, provide whole set of equipment and turnkey solution for your garage.  
 
2. Compared to normal trading company, we have abroad sales stores and professional after-sale team. You don’t need to worry about our company strength, equipment installation and maintenance problems.
 
3. Compared to normal sales company, we have our LOGO on all of our equipment, Uniform color, if you want to start your own business or act as a product agent, we are the best solution for your investment.

Classification: Variable Capacity
Job Classification: Reciprocating
Transmission Power: Dynamoelectric
Cooling Method: Air-cooled
Cylinder Arrangement Mode: Symmetrical Balance
Cylinder Stage: Single Stage
Customization:
Available

|

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

Can air compressors be used for inflating tires and sporting equipment?

Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:

1. Tire Inflation:

Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.

2. Sporting Equipment Inflation:

Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.

3. Air Tools for Inflation:

Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.

4. Adjustable Pressure:

One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.

5. Efficiency and Speed:

Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.

6. Portable Air Compressors:

For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.

It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.

air compressor

In which industries are air compressors widely used?

Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:

1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.

2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.

3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.

4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.

5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.

6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.

7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.

8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.

9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.

These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.

China high quality 0.67m3/Min Auto Tools Piston Compressor Air Pump Compressor   air compressor for carChina high quality 0.67m3/Min Auto Tools Piston Compressor Air Pump Compressor   air compressor for car
editor by CX 2023-10-11

China Hot selling 1.5kw 2HP 8 Bar 50L Reciprocating Piston Compressor 2 HP Double Piston Air Compressor with high quality

Product Description

1.5KW 2HP 8 Bar 50L Reciprocating Piston Compressor 2 HP Double Piston Air Compressor

 

No

Item

   1.5KW 2HP 8 Bar 50L Reciprocating Piston Compressor 2 HP Double Piston Air Compressor
   1

Power

1.5KW

2

Air discharge capacity

0.17m3/min

3

Compressor Tank

62L

4

Rated air pressure

0.8MPa

5

Cylinder

   # 51mm*2

6

Compressor size

100*47*75cm

7

Compressor weight

71KG

8

MOQ

1 set

 

Company Profile

HangZhou CHINAMFG Machinery Co., Ltd (hereinafter referred to as Lingyu), founded in 2009, is a modern new national high-tech enterprise integrating R & D, manufacturing, sales and service. Compressed air purification equipment and air compressor as the core product, the company has formed 5 series of products and systematic solutions for different industries, scales and applications, such as petroleum, chemical industry, electric power, food, health care, biopharmaceutical, manufacturing and processing, textile industry, and is the most influential complete set of compressed air purification solution service provider in China.

 

With an excellent management team and a senior technical R & D team composed of refrigeration technology experts, CHINAMFG have tacit cooperation in product design, R & D and promotion, deeply understand the meaning of ” Supported by technology, driven by value “, “Quality and service” run through every detail of the company’s operation and management, and won the trust and support of customers widely. The growing process of HangZhou CHINAMFG is the process of serving customers and growing up with customers. We try our best to do everything well and meet every challenge with confidence.
 

 

Certifications

After-sales Service: Video Support
Warranty: 1 Year Warranty
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Structure Type: Closed Type
Samples:
US$ 299/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the advantages of using an air compressor in construction?

Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:

  • Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
  • Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
  • Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
  • Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
  • Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
  • Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
  • Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.

It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.

In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

How is air pressure measured in air compressors?

Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:

1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.

2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.

To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.

It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.

When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.

Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.

China Hot selling 1.5kw 2HP 8 Bar 50L Reciprocating Piston Compressor 2 HP Double Piston Air Compressor   with high qualityChina Hot selling 1.5kw 2HP 8 Bar 50L Reciprocating Piston Compressor 2 HP Double Piston Air Compressor   with high quality
editor by CX 2023-10-10

China Custom High Power and Large Volume Air Compressor/Screw Compressor/AC Compressor/Oiless Air Compressor/Auto Scanner/Air Pump/Industrial Compressor/Car Repair Tools manufacturer

Product Description

High Power And Large Volume Air Compressor/Screw Compressor/Ac Compressor/Oiless Air Compressor/Auto Scanner/Air Pump/Industrial Compressor/Car repair tools

Product Description

Detailed Photos

XP2070-8

Model XP2070-8
Power 3KW/4HP
Voltage 220/380V
Exhaust volume 250l/min
Rated pressure 8bar
Machine head speed 880rmp
Air storage tank volume 90L
Cylinder 70mm*2
External dimensions 1150*440*840mm
Net weight 90KG

XP2095-8

Model XP2095-8
Power 4KW/5.5HP
Voltage 380V
Exhaust volume 600l/min
Rated pressure 8bar
Machine head speed 880rmp
Air storage tank volume 160L
Cylinder 95mm*2
External dimensions 1260*460*1571mm
Net weight 145KG

XP-0.12/8

Model XP0.12/8
Power 1.1KW/1.5HP
Voltage 220V
Exhaust volume 120l/min
Rated pressure 8bar
Machine head speed 980rmp
Air storage tank volume 70L
Cylinder 51mm*2
External dimensions 1000*380*760mm
Net weight 60KG

XP-0.25/8

Model XP0.25/8
Power 2.2KW/3HP
Voltage 220V
Exhaust volume 250l/min
Rated pressure 8bar
Machine head speed 980rmp
Air storage tank volume 80L
Cylinder 65mm*2
External dimensions 1120*400*820mm
Net weight 81KG

XP-0.6/8

Model XP0.6/8
Power 4KW/5.5HP
Voltage 380V
Exhaust volume 600l/min
Rated pressure 8bar
Machine head speed 930rmp
Air storage tank volume 105L
Cylinder 90mm*2
External dimensions 1150*500*850mm
Net weight 130KG

XP-1.05/14

Model XP1.05/14
Power 7.5KW/10HP
Voltage 380V
Exhaust volume 1050l/min
Rated pressure 14bar
Machine head speed 760rmp
Air storage tank volume 300L
Cylinder 105mm*2          55mm*2
External dimensions 1520*600*1150mm
Net weight 295KG

TOTAL

 

 

 

Product display

 

Trade Info:

Trade Terms

FOB / CFR

MOQ

3UNITS  (USD200.00 extrally charged for LCL shipment to cover the inland freight + custom declaration fee)

Port

HangZhou

Shipment

BY SEA /AIR

Payment Terms

T/T

Payment condition

30% prepayment,balanced before shipment.

Supply Capability

1000units/month

Sample Availability

Yes ,But all freight(Inland freight +seafreight) covered by buyer

Sample Time

5-10days(depends on whether have in stock)

Lead Time

25-30days(Rush season 5-10days longer)

Packing

Metal frame&Carton

Delivery time

30-45days shipping time (depends on destination position)

Service

1% free parts;1year warranty after port of destination

 

Why do you choose our product?

1. Why should I choose our product?
There are several reasons you should strongly consider purchasing our product:
*Top raw materials from only the finest plants
*Only professional cost-effective equipment 
*Low prices with high quality revenue producing products
*Increase productivity for your customers( Your customers gain more, they will enjoy buying from you.)
*The best customer service. Quick reply within 24 hours and more.
*Great Warranty

2. How safe are your product?
our product  have been tested and CE certified for safety .
They also meet the American and Australian Standard.

3. Should I keep repair and replacement parts in stock?
Yes, most all commonly required repair and replacement parts should always keep in stock.

4. Are your product designed for commercial use?
All of our product can be used in commercial applications without any problems.

5. Do you offer any custom designs?
Yes,we provide OEM/ODM services to top range partners.Produce a superior product for you by your designs.

After-sales Service: 24 Hours Online
Warranty: 36 Months
Application: Back Pressure Type, Low Back Pressure Type
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How are air compressors employed in the petrochemical industry?

Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:

1. Instrumentation and Control Systems:

Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.

2. Pneumatic Tools and Equipment:

Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.

3. Process Air and Gas Supply:

Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.

4. Cooling and Ventilation:

Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.

5. Nitrogen Generation:

Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.

6. Instrument Air:

Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.

By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China Custom High Power and Large Volume Air Compressor/Screw Compressor/AC Compressor/Oiless Air Compressor/Auto Scanner/Air Pump/Industrial Compressor/Car Repair Tools   manufacturer China Custom High Power and Large Volume Air Compressor/Screw Compressor/AC Compressor/Oiless Air Compressor/Auto Scanner/Air Pump/Industrial Compressor/Car Repair Tools   manufacturer
editor by CX 2023-10-10