Description du produit
| Modèle | MDS185-10 | |||||||||
| Compressor | Air delivery |
m3/min | 5.3 | |||||||
| cu.ft/min | 189.3 | |||||||||
| Discharge pressure | bar | 10 | ||||||||
| psig | 145 | |||||||||
| Capacity of pressure Reserrvoir | M3 | 0.02 | ||||||||
| Diesel Engine |
Manufacture&Model |
Foxair-4JB1T-G1 |
||||||||
| Cylinder Number | 4 | |||||||||
| Rotation speed(Rmp) | Operating | 3000 | ||||||||
| Idle speed(r/min) | 1600 | |||||||||
| Rated power(KW) |
65 |
|||||||||
| Lubricating Oil capacity(L) | 5 | |||||||||
|
Displacement (L) |
2.77 | |||||||||
|
Coolant Capacity (L) |
9 | |||||||||
|
Battery |
6-QW-70 |
|||||||||
| Standard Configuration |
. Suction valve Lubricating oil filter Oil thermostatic valve 50°C radiator
Solenoid valve Vertical air/oil tank Pressure regular valve Air/oil separator
Lubricating oil radiator Safety valve Emergency stop button Air filter of engine
Minimum pressure valve Lockable battery isolator switch
Air filter of compressor Vent valve Powder coated canopy Shuttle valve
24V sealed for life maintenance free battery Fuel tank for 8 hours running
| General Features |
| Structure diagram |
1.Lifting bail 2. Exhaust outlet 3. Door 4. Handle 5. Service valve 6. Instrument panel
| Feature&Benefit | ||||||||||
| Feature | Benefit | |||||||||
| Pressure selection and control | Easy pressure setting | |||||||||
| Flow selection and control | The working pressure and airflow rate can be adjusted according to the size of air consumption without wasting any diesel | |||||||||
| The twin-screw rotor is directly connected with the diesel engine by a highly flexible coupling | Outputting more air with less energy consumption, featuring high reliability, longer service life, and low maintenance cost. | |||||||||
| The two-stage air filtration system | The total efficiency of air filtration reaches 99.8% ensuring the compressor to not be infringed by dust and dirt particles and longer service life of the engine | |||||||||
| High-temperature resistance design | Able to run for a long time under extreme cold or hot temperature from -20ºC to 50ºC | |||||||||
| One-button start, clear operational parameters | Operators don’t have to go through long-term professional training, and unattended operations can be achieved. | |||||||||
| Application areas |
| Field | Application | Nominal Working Pressure(bar) | Free Air Delivery Range(m3/min) | |||||||
| General Construction (building sites, road maintenance, bridges, tunnels, concrete pumping and shotcreting) |
Hand-held pneumatic breakers | 7~14 | 5~13 | |||||||
| Jack hammers | ||||||||||
| Air guns | ||||||||||
| Shotcrete equipment | ||||||||||
| Pneumatic wrenches | ||||||||||
| Nut runners | ||||||||||
| Ground Engineering Drilling (basement and foundation excavation for apartment blocks and other buildings) |
Pneumatic rock drills | 7~17 | 12~28 | |||||||
| Block cutters | ||||||||||
| Dewatering pumps. | ||||||||||
| Hand-held pneumatic breakers | ||||||||||
| Utility, CHINAMFG Blasting (shipyards, steel construction and large renovation jobs) |
Sandblasting (remove rust, scale, paint) |
7~10 | 10~22 | |||||||
| Blast Hole Drilling (aggregate production for construction stabilization, cement production in limestone quarries and open pit mining) |
Rock drills | 14~21 | 12~29 | |||||||
| Dewatering pumps | ||||||||||
| Hand-held breakers | ||||||||||
| High Pressure Drilling (drilling for water wells and foundations for high-rise buildings, along with geotechnical/geothermal applications) |
Water well drilling | 20~35 | 18~40 | |||||||
| DTH drilling | ||||||||||
| Rotary drilling | ||||||||||
| Selection table |
| Small Series | ||||||||||
| Small Series | FAD | Pressure | Engine model | Dimensional Date(mm) | ||||||
| m3/min | cfm | Bar | psig | length | width | height | weight(kg) | |||
| model | with tow bar | without tow bar | ||||||||
| MDS55S-7 | 1,55 | 55 | 7 | 101,5 | D902 | 2925 | 1650 | 1200 | 1200 | 600 |
| MDS80S-7 | 2,24 | 80 | 7 | 101,5 | D1005 | 2925 | 1650 | 1200 | 1200 | 630 |
| MDS100S-7 | 2,8 | 100 | 7 | 101,5 | V1505 | 2925 | 1650 | 1200 | 1200 | 640 |
| MDS125S-7 | 3,5 | 125 | 7 | 101,5 | V1505 | 3065 | 1800 | 1500 | 1350 | 810 |
| MDS130S-8 | 3,7 | 132 | 8 | 116 | JE493 | 3065 | 1800 | 1500 | 1350 | 810 |
| MDS185S-7 | 5,18 | 185 | 7 | 101,5 | JE493 | 3200 | 1900 | 1740 | 1660 | 950 |
| MDS185S-10 | 5,18 | 185 | 10 | 145 | JE493 | 3050 | 1900 | 1740 | 1660 | 950 |
| Middle Series (Low&Medium pressure) | ||||||||||
| Middle Series (Low&Medium pressure) | FAD | Pressure | Engine model | Dimensional Date(mm) | ||||||
| m3/min | cfm | Bar | psig | length | width | height | weight(kg) | |||
| model | with tow bar | without tow bar | ||||||||
| MDS265S-7 | 7,42 | 265 | 7 | 101,5 | JE493 | 3629 | 2200 | 1700 | 1470 | 1200 |
| MDS300S-14 | 8,4 | 300 | 14 | 203 | 4BTA3.9 | 3850 | 2600 | 1810 | 2378 | 1800 |
| MDS350S-10 | 9,9 | 354 | 10 | 145 | 4BT3.9 | 3850 | 2600 | 1810 | 2378 | 1800 |
| MDS390S-7 | 11 | 393 | 7 | 101,5 | 4BTA3.9 | 3850 | 2600 | 1810 | 2378 | 1800 |
| MDS390S-13 | 11 | 393 | 13 | 188,5 | QSB4.5 | 3850 | 3100 | 1810 | 2378 | 1980 |
| MDS429S-7 | 12 | 429 | 7 | 101,5 | 4BTA3.9 | 3850 | 2600 | 1810 | 2378 | 1800 |
| MDS429S-14 | 12 | 429 | 14 | 203 | QSB4.5 | 3850 | 3100 | 1810 | 2378 | 1980 |
| MDS500S-14 | 14,1 | 504 | 14 | 203 | 6BTAA5.9 | 4550 | 3600 | 1810 | 2378 | 3100 |
| MDS690S-14 | 19,3 | 689 | 14 | 203 | QSB6.7 | 4950 | 3300 | 2170 | 2620 | 3500 |
| MDS720S-10 | 20,2 | 721 | 10 | 145 | QSB6.7 | 4950 | 3300 | 2170 | 2620 | 3500 |
| MDS750S-12 | 21 | 750 | 12 | 174 | QSB6.7 | 4950 | 3300 | 2170 | 2620 | 3500 |
| MDS786S-10.3 | 22 | 786 | 10,3 | 149,35 | QSB6.7 | 4950 | 3300 | 2170 | 2620 | 3500 |
| MDS820S-14 | 23 | 821 | 14 | 203 | 6LTAA8.9 | 5300 | 4200 | 2170 | 2630 | 5200 |
| MDS850S-8.6 | 24 | 857 | 8,6 | 124,7 | 6CTAA8.3 | 5300 | 4200 | 2170 | 2630 | 4600 |
| MDS900S-7.1 | 25,3 | 904 | 7,1 | 102,95 | 6CTA8.3 | 5300 | 4200 | 2170 | 2630 | 4600 |
| Middle Series (Medium&High pressure) | ||||||||||
| Middle Series (Medium&High pressure) | FAD | Pressure | Engine model | Dimensional Date(mm) | ||||||
| m3/min | cfm | Bar | psig | length | width | height | weight(kg) | |||
| model | with tow bar | without tow bar | ||||||||
| MDS460S-17 | 13 | 464 | 17 | 246,5 | 6BTAA5.9 | 4600 | 3500 | 1800 | 2230 | 3500 |
| MDS620S-17 | 17,4 | 621 | 17 | 246,5 | 6LTAA8.9 | 5300 | 4200 | 2170 | 2630 | 5200 |
| MDS650S-19 | 18,2 | 650 | 19 | 275,5 | QSL8.9 | 5300 | 4200 | 2170 | 2630 | 5200 |
| MDS690S-20.4 | 19,4 | 693 | 20,4 | 295,8 | 6LTAA8.9 | 5300 | 4200 | 2170 | 2630 | 5200 |
| MDS770S-21 | 21,6 | 771 | 21 | 304,5 | 6LTAA8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS830S-18 | 23,2 | 830 | 18 | 261 | 6LTAA8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS820S-25 | 23 | 821 | 25 | 362,5 | QSM11 | 5300 | 4200 | 2100 | 2630 | 5600 |
| MDS860S-20.4/17.3 | 24,2 | 864 | 20,4 | 295,8 | QSL8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| 24,2 | 864 | 17,3 | 250,85 | |||||||
| MDS875S-23 | 24,5 | 875 | 23 | 333,5 | QSM11 | 5300 | 4200 | 2100 | 2630 | 5600 |
| Large Series (Low&Medium pressure) | ||||||||||
| Large Series (Low&Medium pressure) | FAD | Pressure | Engine model | Dimensional Date(mm) | ||||||
| m3/min | cfm | Bar | psig | length | width | height | weight(kg) | |||
| model | with tow bar | without tow bar | ||||||||
| MDS900S-14.2/10.5 | 25,1 | 896 | 14,2 | 205,9 | 6LTAA8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| 25,2 | 900 | 10,5 | 152,25 | |||||||
| MDS910S-14 | 25,6 | 914 | 14 | 203 | 6LTAA8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS970S-10 | 27,2 | 971 | 10 | 145 | QSL8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS1011S-8.6 | 28,3 | 1011 | 8,6 | 124,7 | QSL8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS1054S-12 | 29,5 | 1054 | 12 | 174 | QSL8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS1250S-8.6 | 35 | 1250 | 8,6 | 124,7 | QSL8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS1400S-13 | 40 | 1400 | 13 | 188,5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 5800 |
| MDS1600S-10.3 | 45 | 1600 | 10,3 | 149,35 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 5800 |
| MDS1785S-13 | 50 | 1785 | 13 | 188,5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 5800 |
| MDS2140S-10 | 60 | 2142 | 10 | 145 | QSZ14 | 7400 | 5400 | 2230 | 2630 | 8400 |
| Large Series (Medium&High pressure) | ||||||||||
| Large Series (Medium&High pressure) | FAD | Pressure | Engine model | Dimensional Date(mm) | ||||||
| m3/min | cfm | Bar | psig | length | width | height | weight(kg) | |||
| model | with tow bar | without tow bar | ||||||||
| MDS900S-20 | 25,3 | 904 | 20 | 290 | QSM11 | 5300 | 4200 | 2100 | 2630 | 5800 |
| MDS960S-18 | 26,9 | 961 | 18 | 261 | QSM11 | 5300 | 4200 | 2100 | 2630 | 5800 |
| MDS1000S-35 | 28,2 | 1000 | 35 | 507,5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1089S-25 | 30,5 | 1089 | 25 | 362,5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1200S-24 | 33,6 | 1200 | 24 | 348 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1250S-21 | 35 | 1250 | 21 | 304,5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1250S-25 | 35 | 1250 | 25 | 362,5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1250S-30 | 35 | 1250 | 30 | 435 | WP17G770E302 | 6200 | 4700 | 2100 | 2630 | 7800 |
| MDS1250S-35 | 35 | 1250 | 35 | 507,5 | WP17G770E302 | 6200 | 4700 | 2100 | 2630 | 7800 |
| MDS1250S-40 | 35 | 1250 | 40 | 580 | WP17G770E302 | 6200 | 4700 | 2100 | 2630 | 7800 |
| MDS1428S-18 | 40 | 1428 | 18 | 261 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1428S-35 | 40 | 1428 | 35 | 507,5 | TAD1643VE-B | 7400 | 5500 | 2180 | 2650 | 10000 |
| MDS1428S-40 | 40 | 1428 | 40 | 580 | QSK19 | 7400 | 5500 | 2180 | 2650 | 10000 |
| MDS1600S-25 | 44,8 | 1600 | 25 | 362,5 | WP17G770E302 | 7400 | 5500 | 2180 | 2650 | 10000 |
| GTL Air compressor test system |
| Service après-vente : | En ligne |
|---|---|
| Garantie: | 1year |
| Style de lubrification : | Lubrifié |
| Circuit de refroidissement: | Water Cooling |
| Source d'alimentation : | Diesel Engine |
| Position du cylindre : | Verticale |
| Personnalisation : |
Disponible
|
|
|---|
.webp)
Les compresseurs d'air peuvent-ils être utilisés dans la construction navale et les applications maritimes ?
Les compresseurs d'air sont largement utilisés dans la construction navale et les applications maritimes pour diverses tâches et opérations. L'industrie maritime dépend de l'air comprimé pour de nombreuses fonctions essentielles. Voici un aperçu de l'utilisation des compresseurs d'air dans la construction navale et les applications maritimes :
1. Outils et équipements pneumatiques :
Les compresseurs d'air sont largement utilisés pour alimenter les outils et équipements pneumatiques dans la construction navale et les opérations maritimes. Des outils tels que les clés à chocs, les perceuses, les meuleuses, les ponceuses et les marteaux burineurs nécessitent de l'air comprimé pour fonctionner. La polyvalence et la puissance de l'air comprimé en font une source d'énergie idéale pour les travaux intensifs, la maintenance et les activités de construction dans les chantiers navals et à bord des navires.
2. Peinture et préparation de la surface :
Les compresseurs d'air jouent un rôle crucial dans la peinture et la préparation des surfaces lors de la construction et de l'entretien des navires. L'air comprimé alimente les pistolets à peinture, les sableuses et autres outils de préparation de surface. Il fournit la force nécessaire à une application efficace et uniforme des peintures, revêtements et finitions protectrices, garantissant ainsi la durabilité et l'esthétique des surfaces des navires.
3. Actionnement et commandes pneumatiques :
Les compresseurs d'air sont utilisés dans les systèmes d'actionnement et de commande pneumatiques à bord des navires. L'air comprimé sert à actionner les vannes, les actionneurs et les dispositifs de commande pneumatiques qui régulent le débit des fluides, contrôlent les systèmes de propulsion et gèrent divers processus à bord. Les systèmes de commande pneumatiques offrent des avantages en termes de fiabilité et de sécurité pour les applications maritimes.
4. Systèmes de démarrage pneumatique :
Dans les gros moteurs marins, les compresseurs d'air sont utilisés dans les systèmes de démarrage pneumatique. L'air comprimé sert à amorcer la combustion dans les cylindres. Injecté dans ces derniers, il fait tourner le vilebrequin, permettant ainsi l'allumage du carburant et le démarrage du moteur. On trouve couramment des systèmes de démarrage pneumatique dans les systèmes de propulsion des navires et les groupes électrogènes embarqués.
5. Transport pneumatique et manutention des matériaux :
Dans la construction navale et les opérations maritimes, l'air comprimé est utilisé pour le transport pneumatique et la manutention des matériaux. Il sert notamment à acheminer des matériaux en vrac, tels que le ciment, le sable et les céréales, par canalisations ou tuyaux. Les systèmes de transport pneumatique permettent un transfert efficace et contrôlé des matériaux, facilitant ainsi les opérations de construction, de chargement et de déchargement.
6. Climatisation et ventilation :
Les compresseurs d'air sont indispensables au fonctionnement des systèmes de climatisation et de ventilation à bord des navires. L'air comprimé alimente les climatiseurs, les ventilateurs et les souffleurs, assurant ainsi une circulation d'air optimale, un refroidissement efficace et une régulation précise de la température dans les différents compartiments, cabines et salles des machines. Les systèmes fonctionnant à l'air comprimé contribuent au confort, à la sécurité et à l'efficacité opérationnelle des environnements maritimes.
Voici quelques exemples d'utilisation des compresseurs d'air dans la construction navale et les applications maritimes. La polyvalence, la fiabilité et la praticité de l'air comprimé en font une source d'énergie indispensable pour diverses tâches et systèmes de l'industrie maritime.
.webp)
Quel est le rendement énergétique des compresseurs d'air modernes ?
L'efficacité énergétique des compresseurs d'air modernes s'est considérablement améliorée grâce aux progrès technologiques et de conception. Voici un aperçu détaillé des caractéristiques et des facteurs qui contribuent à l'efficacité énergétique des compresseurs d'air modernes :
Technologie d'entraînement à vitesse variable (VSD) :
De nombreux compresseurs d'air modernes utilisent la technologie de variateur de vitesse (VSD), également appelée variateur de fréquence (VFD). Cette technologie permet au moteur du compresseur d'adapter sa vitesse à la demande en air comprimé. En ajustant la vitesse du moteur au débit d'air requis, les compresseurs VSD évitent une consommation d'énergie excessive pendant les périodes de faible demande, ce qui engendre des économies d'énergie importantes par rapport aux compresseurs à vitesse fixe.
Réduction des fuites d'air :
Les fuites d'air sont fréquentes dans les systèmes d'air comprimé et peuvent engendrer un gaspillage d'énergie considérable. Les compresseurs d'air modernes sont souvent dotés d'une étanchéité améliorée et de systèmes de contrôle avancés afin de minimiser les fuites. En réduisant ces fuites, le compresseur maintient plus efficacement des niveaux de pression optimaux, ce qui permet de réaliser des économies d'énergie.
Conception de moteur efficace :
Le moteur d'un compresseur d'air joue un rôle crucial dans son efficacité énergétique. Les compresseurs modernes intègrent des moteurs électriques à haut rendement qui respectent, voire dépassent, les normes d'efficacité énergétique en vigueur. Ces moteurs sont conçus pour minimiser les pertes d'énergie et fonctionner de manière plus efficace, réduisant ainsi la consommation électrique globale.
Systèmes de contrôle optimisés :
Les compresseurs d'air modernes sont équipés de systèmes de contrôle avancés qui optimisent leurs performances et leur consommation d'énergie. Ces systèmes surveillent différents paramètres, tels que la pression, la température et le débit d'air, et adaptent le fonctionnement du compresseur en conséquence. En contrôlant précisément la puissance du compresseur pour répondre à la demande, ils garantissent un fonctionnement efficace et économe en énergie.
Stockage et distribution de l'air :
Des systèmes efficaces de stockage et de distribution d'air sont essentiels pour minimiser les pertes d'énergie dans les réseaux d'air comprimé. Les compresseurs d'air modernes intègrent souvent des réservoirs de stockage d'air correctement dimensionnés et isolés, ainsi que des réseaux de tuyauterie bien conçus qui réduisent les pertes de charge et les transferts de chaleur. Ces mesures contribuent à assurer une alimentation en air comprimé constante et efficace dans l'ensemble du système, limitant ainsi le gaspillage d'énergie.
Gestion et surveillance de l'énergie :
Certains compresseurs d'air modernes sont équipés de systèmes de gestion et de surveillance de l'énergie qui fournissent des données en temps réel sur la consommation énergétique et les performances. Ces systèmes permettent aux opérateurs d'identifier les gaspillages d'énergie, d'optimiser les réglages du compresseur et de mettre en œuvre des pratiques d'économie d'énergie.
Il est important de noter que l'efficacité énergétique d'un compresseur d'air dépend également de facteurs tels que le modèle, la taille et l'application. Les fabricants fournissent généralement des indices ou des spécifications d'efficacité énergétique pour leurs compresseurs, ce qui facilite la comparaison des différents modèles et le choix de l'option la plus performante pour une application donnée.
De manière générale, les compresseurs d'air modernes intègrent diverses technologies et éléments de conception permettant d'économiser l'énergie et d'améliorer leur efficacité. Investir dans un compresseur d'air écoénergétique permet non seulement de réduire les coûts d'exploitation, mais aussi de contribuer aux efforts de développement durable en minimisant la consommation d'énergie et en réduisant les émissions de carbone.
.webp)
Les compresseurs d'air peuvent-ils être utilisés dans le secteur automobile ?
Oui, les compresseurs d'air peuvent être utilisés pour diverses applications automobiles et sont couramment présents dans les ateliers de réparation, les garages et même dans certains véhicules. Voici quelques applications automobiles où les compresseurs d'air sont fréquemment utilisés :
1. Gonflage des pneus : Les compresseurs d'air sont couramment utilisés pour gonfler les pneus dans les applications automobiles. Ils constituent un moyen pratique et efficace de gonfler les pneus à la pression recommandée, garantissant ainsi des performances optimales, une consommation de carburant réduite et une sécurité accrue.
2. Outils pneumatiques : Les compresseurs d'air alimentent une vaste gamme d'outils pneumatiques utilisés en réparation et entretien automobile. Parmi ces outils figurent les clés à chocs, les clés à cliquet, les marteaux pneumatiques, les perceuses pneumatiques et les ponceuses. Les outils pneumatiques sont appréciés pour leur couple élevé et leur excellent rapport puissance/poids, ce qui les rend parfaitement adaptés aux travaux automobiles exigeants.
3. Peinture au pistolet : Les compresseurs d'air sont couramment utilisés en peinture automobile. Ils alimentent les aérographes et les pistolets à peinture servant à appliquer la peinture, l'apprêt et le vernis. Les compresseurs d'air fournissent la pression d'air nécessaire à l'atomisation de la peinture et permettent d'obtenir une finition lisse et uniforme.
4. Entretien du système de freinage : Les compresseurs d'air jouent un rôle crucial dans l'entretien et le diagnostic des systèmes de freinage automobile. Ils servent à pressuriser les conduites de frein, permettant ainsi une purge correcte du système et la détection des fuites ou des défauts.
5. Systèmes de suspension : Certains systèmes de suspension automobile, comme les suspensions pneumatiques, utilisent des compresseurs d'air pour maintenir la pression d'air souhaitée dans les composants de la suspension. Le compresseur gonfle ou dégonfle la suspension selon les besoins afin d'assurer un confort de conduite optimal et une tenue de route irréprochable.
6. Nettoyage et dépoussiérage : Les compresseurs d'air servent à nettoyer les pièces automobiles, à éliminer la poussière et les débris, et à sécher les surfaces. Ils produisent un jet d'air à haute pression qui nettoie efficacement les zones difficiles d'accès.
7. Systèmes de climatisation : Les compresseurs d'air sont un élément essentiel des systèmes de climatisation automobile. Ils compriment et font circuler le fluide frigorigène, permettant ainsi au système de refroidir et de déshumidifier l'air à l'intérieur du véhicule.
Lorsqu'on utilise des compresseurs d'air pour des applications automobiles, il est important de tenir compte des exigences spécifiques de la tâche à accomplir. Il faut s'assurer que le compresseur d'air possède la pression et la capacité nécessaires pour répondre aux besoins de l'application. De plus, il convient d'utiliser des tuyaux, des raccords et des outils adaptés et compatibles avec le débit du compresseur.
De manière générale, les compresseurs d'air sont des outils polyvalents et précieux dans l'industrie automobile, fournissant des sources d'énergie efficaces pour une large gamme d'applications, du gonflage des pneus à l'alimentation des outils pneumatiques et au soutien de divers systèmes automobiles.


editor by CX 2023-10-03