Opis produktu
Introduction of MCH-6 Portable Air compressor Machine Mini Screw Air Compressor
300bar Air compressor
Charging rate: 100 L/min
Working pressure: 225 Bar – 300 Bar
Driven by: Three phase electric motor zmwm02
MCH-6 300bar Breathing Air Respirator Filling Compressor is the smallest, lightest portable breathing air compressor in the whole industry, the petrol engine of MCH6 series only 37KG,can easily put in the trunk of the car,carry to use the site. It can be used in the fire, scuba diving, shooting, emergency rescue, chemical, oil field and other fields. MCH6 has high quality and its character of portable and simple design. The output of compressed air meets the criterion of EN12571.
Product Structure of MCH-6 Portable Air compressor Machine Mini Screw Air Compressor
Optional gasoline engine, three-phase, single-phase electric drive motor, V belt drive
Four cylinder level 4 high-pressure compressor
Stainless steel cooler between every level
Installed in the 400 bar high pressure on the compressor pressure gauge
1.2 CHINAMFG high pressure air tube, joints according to the needs of you
Stainless steel fan cover
Two oil-water separator, 2 drain valve (optional automatic decontamination)
Activated carbon molecular sieve filtration system
To set pressure automatic stop, prevent the relief valve frequent rev. Jump, ensure safety and security
Main Parameter of MCH-6 Portable Air compressor Machine Mini Screw Air Compressor
| Model | MCH-6/ET STHangZhouRD |
| Charging Rate | 100L/Min-6m3/h-3.5CBM |
| Filling Time Pressure | 6.8L 0-300Bar/20Min 10L 0-200Bar/20Min |
| Working Pressure | 225Bar/3200Psi 300Bar/4700Psi |
| Driven By | Three-Phase Electric Motor |
| Moc | 3KW |
| Dimensions | Height: 35cm Width: 65cm Depth: 39cm 35*65*39cm |
| Waga | 39kg |
| Noise Pressure | 83 db |
| No. Of Stages and Cylinders | 4 |
| Lubricating Oil Capacity | 300cc (0.3L) 300ml |
| Lubricant | Coltri Oil CE 750 Coltri Oil CE 750 |
| Frame | Powder Coated Steel |
| Oil/Moisture Separator | After Last Stage |
| Filtration | Filter Cartridge Activated Carbon and Molecule |
| Full Load Amp | 11.5A(230V-50/60 HZ) 6.7A(400V-50/60 HZ |
| Interstage Coolers and After Coolers | Stainless Steel |
| Breathing Air | EN 12571 CGA |
| Suction Filter | 2 Micro Paper–25 Micro Polyester |
| Full load Amp | 11, 5 A (230 V – 50/60Hz) 6, 7 A (400 V – 50/60Hz) |
| Safety valve | On the separator housing |
Photos of MCH-6 Portable Air compressor Machine Mini Screw Air Compressor
| Lubrication Style: | Lubricated |
|---|---|
| Układ chłodzenia: | Chłodzenie powietrzem |
| Źródło zasilania: | Zasilanie prądem zmiennym |
| Cylinder Position: | Angular |
| Typ konstrukcji: | Typ zamknięty |
| Installation Type: | Movable Type |
| Personalizacja: |
Dostępny
|
|
|---|
.webp)
W jaki sposób technologia napędu o zmiennej prędkości poprawia wydajność sprężarki powietrza?
Technologia napędu o zmiennej prędkości (VSD) poprawia wydajność sprężarki powietrza, umożliwiając jej regulację prędkości obrotowej silnika w celu dopasowania do zapotrzebowania na sprężone powietrze. Technologia ta oferuje szereg korzyści, które przyczyniają się do oszczędności energii i poprawy ogólnej wydajności systemu. Oto, w jaki sposób technologia VSD poprawia wydajność sprężarki powietrza:
1. Dopasowanie zapotrzebowania na powietrze:
Sprężarki powietrza wyposażone w technologię VSD mogą regulować prędkość obrotową silnika, aby precyzyjnie dopasować ją do wymaganej wydajności sprężonego powietrza. Tradycyjne sprężarki o stałej prędkości obrotowej pracują ze stałą prędkością, niezależnie od rzeczywistego zapotrzebowania, co prowadzi do strat energii w okresach niższego zapotrzebowania na powietrze. Sprężarki VSD natomiast zwiększają lub zmniejszają prędkość obrotową silnika, aby dostarczyć wymaganą ilość sprężonego powietrza, zapewniając optymalne wykorzystanie energii.
2. Skrócony czas pracy bez obciążenia:
Sprężarki o stałej prędkości obrotowej często pracują bez obciążenia w okresach niskiego zapotrzebowania, w których nadal zużywają energię, nie wytwarzając sprężonego powietrza. Technologia VSD eliminuje lub znacznie skraca ten czas pracy bez obciążenia poprzez regulację prędkości obrotowej silnika w celu dokładnego dostosowania jej do zapotrzebowania na powietrze. W rezultacie sprężarki VSD minimalizują straty energii w okresach przestoju, co przekłada się na poprawę sprawności.
3. Łagodny rozruch:
Tradycyjne sprężarki o stałej prędkości obrotowej charakteryzują się wysokim prądem rozruchowym podczas rozruchu, co może obciążać układ elektryczny i powodować spadki napięcia. Sprężarki VSD wykorzystują funkcję łagodnego rozruchu, stopniowo zwiększając prędkość obrotową silnika zamiast natychmiastowego osiągania pełnej prędkości. Ta funkcja łagodnego rozruchu zmniejsza obciążenia mechaniczne i elektryczne, zapewniając płynny i kontrolowany rozruch oraz minimalizując skoki napięcia.
4. Oszczędność energii przy obciążeniu częściowym:
W wielu zastosowaniach zapotrzebowanie na sprężone powietrze zmienia się w ciągu dnia lub w różnych cyklach produkcyjnych. Sprężarki VSD doskonale sprawdzają się w takich sytuacjach, pracując z niższymi prędkościami w okresach mniejszego zapotrzebowania. Ponieważ pobór mocy jest proporcjonalny do prędkości obrotowej silnika, praca sprężarki z obniżonymi prędkościami znacznie zmniejsza zużycie energii w porównaniu ze sprężarkami o stałej prędkości, które pracują ze stałą prędkością niezależnie od zapotrzebowania.
5. Eliminacja cykli włączania/wyłączania:
Sprężarki o stałej prędkości obrotowej często wykorzystują cykle włączania/wyłączania do regulacji wydajności sprężonego powietrza. Cykle te mogą powodować częste rozruchy i zatrzymywania, co zwiększa zużycie energii i powoduje zużycie mechaniczne. Sprężarki VSD eliminują potrzebę cykli włączania/wyłączania poprzez ciągłą regulację prędkości obrotowej silnika w celu dostosowania do zapotrzebowania. Pracując ze stałą prędkością w wymaganym zakresie, sprężarki VSD minimalizują straty energii związane z częstymi cyklami.
6. Ulepszona kontrola systemu:
Sprężarki VSD oferują zaawansowane funkcje sterowania, umożliwiające precyzyjne monitorowanie i regulację systemu sprężonego powietrza. Systemy te można zintegrować z czujnikami i algorytmami sterowania, aby utrzymać optymalne ciśnienie w systemie, minimalizować wahania ciśnienia i zapobiegać nadmiernemu zużyciu energii. Możliwość precyzyjnego dostrojenia wydajności sprężarki w oparciu o bieżące zapotrzebowanie przyczynia się do poprawy ogólnej sprawności systemu.
Dzięki zastosowaniu technologii napędu o zmiennej prędkości sprężarki powietrza mogą znacząco oszczędzać energię, obniżać koszty operacyjne i zwiększać swoją przyjazność dla środowiska poprzez minimalizowanie strat energii i optymalizację wydajności.
.webp)
What are the environmental considerations when using air compressors?
When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:
Efektywność energetyczna:
Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.
Air Leakage:
Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.
Noise Pollution:
Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.
Emissions:
While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.
Proper Waste Management:
Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.
Sustainable Practices:
Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.
By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
.webp)
Jak mierzy się ciśnienie powietrza w sprężarkach powietrza?
Ciśnienie powietrza w sprężarkach powietrza jest zazwyczaj mierzone w jednej z dwóch popularnych jednostek: funtach na cal kwadratowy (PSI) lub barach. Oto krótkie wyjaśnienie, jak mierzy się ciśnienie powietrza w sprężarkach powietrza:
1. Funty na cal kwadratowy (PSI): PSI to najpowszechniej stosowana jednostka miary ciśnienia w sprężarkach powietrza, szczególnie w Ameryce Północnej. Reprezentuje siłę wywieraną przez jeden funt siły na powierzchnię jednego cala kwadratowego. Manometry w sprężarkach powietrza często wyświetlają odczyty ciśnienia w PSI, umożliwiając użytkownikom monitorowanie i odpowiednią regulację ciśnienia.
2. Bar: Bar to kolejna jednostka ciśnienia powszechnie stosowana w sprężarkach powietrza, szczególnie w Europie i wielu innych częściach świata. Jest to metryczna jednostka ciśnienia równa 100 000 paskali (Pa). Sprężarki powietrza mogą być wyposażone w manometry wyświetlające ciśnienie w barach, co stanowi alternatywną opcję pomiaru dla użytkowników w tych regionach.
Aby zmierzyć ciśnienie powietrza w sprężarce, na wylocie sprężarki lub zbiorniku odbiorczym zazwyczaj montuje się manometr. Manometr służy do pomiaru siły wywieranej przez sprężone powietrze i wyświetlania odczytu w określonej jednostce, takiej jak PSI lub bar.
Należy pamiętać, że ciśnienie powietrza wskazane na manometrze reprezentuje ciśnienie w określonym punkcie układu sprężarki powietrza, zazwyczaj na wylocie lub w zbiorniku. Rzeczywiste ciśnienie w miejscu użytkowania może się różnić ze względu na czynniki takie jak spadek ciśnienia w przewodach sprężonego powietrza lub ograniczenia spowodowane przez osprzęt i narzędzia.
Podczas korzystania ze sprężarki powietrza, konieczne jest ustawienie ciśnienia na odpowiednim poziomie, wymaganym dla danego zastosowania. Różne narzędzia i urządzenia mają różne wymagania dotyczące ciśnienia, a przekroczenie zalecanego ciśnienia może prowadzić do uszkodzenia lub niebezpiecznej pracy. Większość sprężarek powietrza pozwala użytkownikom na regulację ciśnienia wyjściowego za pomocą regulatora ciśnienia lub podobnego mechanizmu sterującego.
Regularne monitorowanie ciśnienia powietrza w sprężarce powietrza jest kluczowe dla zapewnienia optymalnej wydajności, efektywności i bezpieczeństwa pracy. Dzięki zrozumieniu jednostek miary i prawidłowemu użyciu manometrów, użytkownicy mogą utrzymać pożądany poziom ciśnienia powietrza w swoich systemach sprężarek powietrza.


editor by CX 2023-10-03