Tag Archives: 2 stage compressor

China supplier 2 Stage Compressed VSD Screw Air Compressor with Frequency Inverter air compressor price

Product Description

 2 stage compressed VSD screw air compressor with frequency inverter

Two stage compression features and advantages:
1.The intaked air flow after compressed by the first stage compression, connect with large amount oil mist in the cooling channel then cool fast, and then goes into the second stage compression system to be compressed and discharged under the requirement pressure, much more energy saving than 1 stage compression type.
2. Adopt German double rotor screw air end, big rotor and low rotary speed designing, the first and the second stage compression rotors are designed in 1 compression chamber, through different driving gear and driven gear ratio to get the best seal speed of the first stage and the second stage rotors gear top line, greatly improving the air end compression efficiency.
3. Adopt internal spray oil cooling type, enable air isothermal compression, saving energy by 8%.
3. Each stage compression ratio is as low as 3:1, little internal leakage, improving efficiency by15%.
Smaller compression ratio can improve running stability and reliability, high efficiency working, long using life, very low fault rate.
4. The whole unit machine can reach China national level-1 energy efficiency standard.
5. Have fixed speed type (TKL) and permanent magnetic frequency conversion motor one-piece shaft type (TKLYC).

I. TKL series of 2 stage compression twin screw air compressor 

Adopt advanced twin rotor screw air end imported from German and Italy, rate of 5:6, high precision of gear and seal, use CZPT bearing and high grade oil seals to ensure the main engine long life and low noise operation. The air end and the diesel / electric motor is directly connected through the high elastic coupling, no gear, less energy consumption, more air output, high reliability, long service life and low maintenance cost.

II. TKLYC series of Permanent magnetic frequency conversion 2 stage compression twin screw air compressor

Adopt energy saving permanent magnetic frequency conversion screw air end:
1. Adopt One-piece shaft connection structure for the permanent magnetic motor and the air end
★Permanent magnetic Motor’s rotor is directly sleeved on shaft of the air end, embedded integrated direct-connecting structure, without coupling part or transmission gear part, namely one-piece shaft, ensuring of 100% transmission efficiency.
★Taper connection is adopted for motor, and it can be assembled and disassembled very simply.
2. Adopt permanent magnetic frequency conversion electric motor
★Permanent magnetic frequency conversion motor is the most advanced technical electric motor, efficiency can be up to 97%, higher by 3%-5% than ordinary motor with frequency conversion device type, saving energy a lot obviously.
★Permanent magnetic electric motor adopts high temperature resistance rare earth permanent magnet to ensure no demagnetization. Without motor bearing or sleeve, so no need lubricating grease, no need concern alignment problem, compact structure, saving space, convenient use and maintenance.
3. Wide frequency conversion, constant pressure air feeding
★Frequency application scope (0HZ-200HZ) is wide, and motor efficiency under different load is basically constant.
★The motor is big torque, strong adaptability and loaded startup.
★The whole machine work under frequency conversion state, and can operate frequency modulation according to the client’s actual requirement of air consumption at constant pressure, realizing high efficiency and energy saving.
4. Running stable and reliable
★Machine starting up under frequency conversion state, greatly reducing the impacting to the power grid equipment, avoiding of damage to the electric equipment and saving electric energy when starting.
★No need to set working pressure up and bottom limit value, can operate by regulating the frequency at the setting pressure point to stabilize the pressure, so can save electric energy by 10%-15%.
5. Energy saving a lot obviously
 Compared with the fixed speed type compressor, our permanent magnetic frequency conversion compressor can save energy by 30%; compared with the ordinary motor with frequency device  type compressor, our compressor can save energy by 5%-10%.

Technical parameter of 2 stage air compressor (TKLYC type):

Type Exhause pressure (Mpa) Air displacemen (m3/min) Power (Kw) Noise (dBa) Dimensions (mm) Outlet pipe size Weight (Kg)
TKLYC-15F-II 0.8/1.0/1.3 2.7/2.3/2.2 15 66 1600*900*1300 G1 1/2 800
TKLYC-18F-II 0.8/1.0/1.3 3.5/3.0/2.5 18.5 66 1600*900*1300 G1 1/2 840
TKLYC-22F-II 0.8/1.0/1.3 4.0/3.5/3.0 22 66 1600*900*1300 G1 1/2 860
TKLYC-30F-II 0.8/1.0/1.3 6.4/5.0/4.2 30 68 1800*1500*1510 G1 1/2 1100
TKLYC-37F-II 0.8/1.0/1.3 7.0/6.0/5.5 37 68 1800*1500*1510 G1 1/2 1100
TKLYC-45F-II 0.8/1.0/1.3 9.5/8.8/8.1 45 68 1800*1500*1510 DN50 2200
TKLYC-55F-II 0.8/1.0/1.3 11.5/10.9/10.5 55 68 2300*1400*1800 DN50 2600
TKLYC-75F-II 0.8/1.0/1.3 16.1/14.5/12.5 75 68 2300*1400*1800 DN65 2850
TKLYC-90F-II 0.8/1.0/1.3 19.8/16.5/13.5 90 68 2470*1700*2571 DN65 2950
TKLYC-110F-II 0.8/1.0/1.3 24.0/19.8/17.2 110 68 3100*1740*2150 DN80 3000
TKLYC-132F-II 0.8/1.0/1.3 28.3/23.2/19.2 132 70 3100*1740*2150 DN80 3100
TKLYC-160F-II 0.8/1.0/1.3 33.3/28.4/23.6 160 72 3460*2040*2200 DN80 5400
TKLYC-185F-II 0.8/1.0/1.3 38.5/33.3/28.4 185 72 3460*2040*2200 DN80 5600
TKLYC-200F-II 0.8/1.0/1.3 41.3/38.5/33.5 200 75 3460*2040*2200 DN80 5800
TKLYC-220F-II 0.8/1.0/1.3 45.5/40.8/37.6 220 75 3720*2220*2200 DN100 6100
TKLYC-250F-II 0.8/1.0/1.3 54.7/44.9/40.3 250 75 3720*2220*2200 DN100 6200

 

Technical parameter of 2 stage air compressor (TKL type):

Model Exhause pressure (Mpa) Air displacement  (m3/min) Power (Kw) Noise (dBa) Dimensions (mm) Outlet pipe size Weight (Kg)
TKL-45F-II 0.8 9.5 45 68 1800*1500*1510 DN50 2400
1.0 8.8
1.3 8.1
TKL-55F-II 0.8 11.5 55 68 1800*1500*1510 DN50 2430
1.0 10.9
1.3 10.5
TKL-75F-II 0.8 16.1 75 68 2470*1700*2571 DN65 2700
1.0 14.5
1.3 12.5
TKL-90F-II 0.8 19.8 90 68 2470*1700*2571 DN65 2800
1.0 16.5
1.3 13.5
TKL-110F-II 0.8 24.0 110 68 2660*1700*2571 DN65 2850
1.0 19.8
1.3 17.2
TKL-132F-II 0.8 28.3 132 70 2660*1700*2571 DN65 4150
1.0 23.2
1.3 19.2
TKL-160F-II 0.8 33.3 160 72 3460*2040*2200 DN80 5100
1.0 28.4
1.3 23.6
TKL-185F-II 0.8 38.5 185 72 3460*2040*2200 DN80 5200
1.0 33.3
1.3 28.4
TKL-200F-II 0.8 41.3 200 75 3460*2040*2200 DN80 5250
1.0 38.5
1.3 33.5
TKL-220F-II 0.8 45.5 220 75 3720*2220*2200 DN100 6100
1.0 40.8
1.3 37.6
TKL-250F-II 0.8 54.7 250 75 3720*2220*2200 DN100 6200
1.0 44.9
1.3 40.3

 

Our factory and workshop

After sales service:
1. Providing professional air compression program designing for free.
2. Providing our factory original machine parts at lowest price after machine sales.
3. Providing training and guidance for free, customers can send their staff to our factory to learn how to operate the machines.
4. Warranty period: the screw main machine is 1 year, the bearing is 1 year, the wear parts of air intake valve, electric components, electromagnetic valve, rate valve are 6 months
5. The air filter, oil filter, oil-water separator, lubricating oil, rubber parts and etc. are not included in warranty range.

Certification and patents of our air compressor

 

FAQ:
Q1: Are you factory or trade company?  
A1: We are factory.
Q2: Warranty terms of your machine? 
A2: One year warranty for the machine and technical support according to your needs.
Q3: Will you provide some spare parts of the machines? 
A3: Yes, of course.
Q4: How long will you take to arrange production? 
A4: 380V 50HZ we can delivery the goods within 20 days. Other electricity or other color we will delivery within 30 days.
Q5: Can you accept OEM orders? 
A5: Yes, with professional design team, OEM orders are highly welcome!

Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type
Type: Twin-Screw Compressor
Customization:
Available

|

air-compressor

Choosing the Right Air Compressor For Your Home

You will find that air compressors are indispensable tools for a variety of situations, including garages, home workshops, and basements. These tools can power a variety of tools, and each model is sized to suit the job at hand. Because air compressors have only one motor, they are lightweight, compact, and easy to handle. Using one air compressor to power several tools will also reduce the wear and tear on individual components. This article will introduce some important characteristics to look for when choosing the right air compressor for your home.

Positive displacement

A positive displacement compressor applies pressure to a fluid, whereas a centrifugal one does the opposite. A positive displacement compressor creates the desired pressure by trapping air and increasing its volume. Its discharge valve releases the high-pressure gas. These compressors are used in industrial applications and nuclear power plants. The difference between a positive and negative displacement compressor is that a positive displacement compressor can compress and release air at a consistent rate.
A positive displacement air compressor uses a reciprocating piston to compress air. This reduces the volume of the air in the compression chamber, and a discharge valve opens when the pressure reaches the desired level. These compressors are used in bicycle pumps and other pneumatic tools. Positive displacement air compressors have multiple inlet ports and have several configurations. Positive displacement air compressors have a single-acting and double-acting piston, and can be oil-lubricated or oil-free.
A positive displacement air compressor is different from a dynamic compressor. It draws air into the compression chambers and then releases the pressure when the valve is opened. Positive displacement compressors are common in industrial applications and are available in single-acting, double-acting, and oil-lubricated models. Large piston compressors have ventilated intermediate pieces and crossheads on gudgeon pins. Smaller models have permanently sealed crankcases with bearings.

Oil-free

Oil-free air compressors have some advantages over their oil-lubricated counterparts. They do not require lubrication oil because they are coated with Teflon. The material has one of the lowest coefficients of friction and is layered, so it slides past other layers with little effort. Because of this, oil-free compressors tend to be cheaper and still deliver comparable performance. Oil-free compressors are a good choice for industrial applications.
The life of an oil-free air compressor is significantly longer than an oil-lubricated counterpart. These models can operate up to 2,000 hours, four times longer than the average oil-lubed compressor. Oil-free compressors also have a significantly lower operating noise than their oil-lubricated counterparts. And because they don’t need oil changes, they are quieter. Some even last up to 2,000 hours.
An oil-free air compressor is a good choice if your application requires high levels of purity. Several applications require ultra-pure air, and even a drop of oil can cause product spoilage or damage to production equipment. In addition to the health risks, an oil-free air compressor reduces the costs associated with oil contamination and minimizes leaks. It also eliminates the need for oil collection, disposal, and treatment.
A typical oil-free air compressor is very efficient, requiring only about 18% of the full load horsepower. However, oil-free compressors have a higher risk of premature failure and are not recommended for large-scale industrial applications. They may also use up to 18% of the compressor’s full capacity. They may sound appealing, but you must make sure you understand the benefits of an oil-free air compressor before choosing one for your industrial applications.

Single-stage

A single-stage air compressor is designed to provide the power for a single pneumatic tool or device. These machines are generally smaller than two-stage compressors and produce less heat and energy. These machines aren’t designed for heavy-duty industries, but they are still highly effective for a variety of applications, including auto shops, gas stations, and various manufacturing plants. They can also be used in borewells, as they are suitable for small spaces with low air flow requirements.
A single-stage air compressor has one cylinder and two valves – the inlet and the delivery valves. Both of these valves function mechanically, with the inlet valve controlling torque and the delivery one controlling air pressure. Generally, single-stage compressors are powered by a gas engine, but there are also electric models available. The single-stage air compressor is the most common type of air compressor. It has a single cylinder, one piston, and one air cylinder.
The single-stage air compressors are used for small projects or personal use. A two-stage air compressor is more effective for industrial projects. Its longer air end life makes it more efficient. It is also more efficient for use in the automotive industry, where the engine has many cylinders. In general, single-stage compressors require a higher power level. The single-stage model is ideal for small projects, while a two-stage one is suitable for larger-scale arsenals.
air-compressor

CFM

The cubic foot-per-minute (CFM) of an air compressor is the output of the machine. In order to calculate the CFM level, start by looking at the compressor’s specifications. You should know how many cubic feet the unit can hold and how many pounds per square inch it can compress. Once you have these information, you can calculate the CFM. Now you can use these numbers to select an appropriate air compressor for your needs.
The most common way to increase the CFM of an air compressor is to turn the regulator down. By turning the dial down, the air compressor will produce more than 10 CFM. You can also try connecting two output valves. Make sure that the settings are adjusted properly before you begin. This will ensure that your air compressor is functioning at its maximum efficiency and lifespan. To increase the CFM of your air compressor, first check that your regulator is calibrated for the desired pressure level.
To calculate the CFM of an air compressor, first determine the tank volume of the machine. Then, multiply this volume by the time it takes to fill the tank. Then, divide the result by 60 seconds to calculate the CFM. Once you know how much air your machine can hold, you can choose a suitable air compressor. If you’re working in a confined area, you should buy a tool with a large tank.

PSI

The PSI of an air compressor is the pressure that it can output. A typical air compressor has a gauge connected to the airline at the bottom, next to it, or between the two. The gauge tells the actual pressure of the air compressor, while the cut-out pressure is determined by the manufacturer. The manufacturer recommends that you set the cut-out pressure twenty to forty PSI higher than the factory recommended pressure. If you want to set the pressure for your nail gun, you can use the cut-in and cut-out pressures on your compressor, and the tank won’t exceed this range.
The PSI of an air compressor measures the force that it can deliver, which is often in pounds per square inch. For most air tools, you need at least forty to 90 psi. In general, reciprocating air compressors work on an on/off basis. This relationship is known as the duty cycle. All air compressors are rated for a particular duty cycle, such as fifty percent on and twenty-five percent off.
The Psig of an air compressor is not free, as many people believe. The PSI of an air compressor is not free, but it is essential to maintain it for safe operations. If you’re having trouble maintaining a consistent pressure, consider turning down the PSI of your compressor by 2 psig. This will determine the critical pressure for the machine. You’ll also increase the amount of energy in the system by one percent.
air-compressor

Power source

The power source for an air compressor is crucial in its operation. Without the correct voltage and amperage, air compressors will not function properly. The power source must be close to the compressor so that it can plug into an electrical outlet. If it is too far from the outlet, the compressor may not be able to build enough pressure. When this happens, the fuse inside the air compressor will turn off to protect the user. The power source should be a safe distance from the compressor.
Most manufacturers do not specify the power source for an air compressor. Depending on the horsepower, the compressor will require approximately four amps of power. A one-horsepower compressor would draw about twelve amps. If it were powered by a typical 120-volt household supply, its motor would exceed the 15-amp breaker capacity. A larger air compressor, however, will require a separate 15-amp power source, making it impossible to use it with this type of power source.
The power source for an air compressor is typically electrical alternating current (AC) that is equivalent to the voltage on a standard wall outlet. A three-phase air compressor, on the other hand, requires a special AC supply with three electrical offset pulses. Regardless of the type of air compressor, the power source must be compatible with the incoming power service. One of the most common problems when attempting to connect an air compressor to an AC power source is undersized wire. This results in low voltage and high amperes, tripping of over-load relays and blown fuses.

China supplier 2 Stage Compressed VSD Screw Air Compressor with Frequency Inverter   air compressor priceChina supplier 2 Stage Compressed VSD Screw Air Compressor with Frequency Inverter   air compressor price
editor by CX 2023-06-08